

LSQUIC Documentation

This is the documentation for LSQUIC [https://github.com/litespeedtech/lsquic] 2.20.0, last updated Sep 15, 2020.

LiteSpeed QUIC (LSQUIC) Library is an open-source implementation of QUIC
and HTTP/3 functionality for servers and clients. LSQUIC is:

	fast;

	flexible; and

	production-ready.

Most of the code in this distribution has been used in our own products
– LiteSpeed Web Server [https://www.litespeedtech.com/products/litespeed-web-server/], LiteSpeed Web ADC [https://www.litespeedtech.com/products/litespeed-web-adc/], and OpenLiteSpeed [https://openlitespeed.org/] –
since 2017.

Currently supported QUIC versions are Q043, Q046, Q050, ID-27, ID-28,
ID-29, and ID-30.
Support for newer versions will be added soon after they are released.

LSQUIC is licensed under the MIT License [http://www.opensource.org/licenses/mit-license.php]; see LICENSE in the source
distribution for details.

Features

LSQUIC supports nearly all QUIC and HTTP/3 features, including

	DPLPMTUD

	ECN

	Spin bits (allowing network observer to calculate a connection’s RTT)

	Path migration

	NAT rebinding

	Push promises

	TLS Key updates

	Extensions:

	Datagrams

	Loss bits extension (allowing network observer to locate source of packet loss)

	Timestamps extension (allowing for one-way delay calculation, improving performance of some congestion controllers)

	Delayed ACKs (this reduces number of ACK frames sent and processed, improving throughput)

	QUIC grease bit to reduce ossification opportunities

Architecture

The LSQUIC library does not use sockets to receive and send packets; that is handled by the user-supplied callbacks. The library also does not mandate the use of any particular event loop. Instead, it has functions to help the user schedule events. (Thus, using an event loop is not even strictly necessary.) The various callbacks and settings are supplied to the engine constructor.
LSQUIC keeps QUIC connections in several data structures in order to process them efficiently. Connections that need processing are kept in two priority queues: one holds connections that are ready to be processed (or “ticked”) and the other orders connections by their next timer value. As a result, no connection is processed needlessly.

Contents

	Getting Started
	Supported Platforms

	Dependencies

	What’s in the box

	Building

	Demo Examples

	Next steps

	Tutorial
	Introduction

	Library Initialization

	Engine Instantiation

	Receiving Packets

	Sending Packets

	When to process connections

	Required Engine Callbacks

	Stream and connection callbacks

	Using Streams

	Client: making connection

	Specifying QUIC version

	Server callbacks

	Engine settings

	Logging

	Key logging and Wireshark

	Connection IDs

	Get this-and-that API

	API Reference
	Preliminaries

	Library Version

	QUIC Versions

	LSQUIC Types

	Library Initialization

	Logging

	Engine Instantiation and Destruction

	Engine Callbacks

	Engine Settings

	Receiving Packets

	Sending Packets

	Stream Callback Interface

	Creating Connections

	Closing Connections

	Creating Streams

	Stream Events

	Reading From Streams

	Writing To Streams

	Closing Streams

	Sending HTTP Headers

	Receiving HTTP Headers

	Push Promises

	Stream Priorities

	Miscellaneous Engine Functions

	Miscellaneous Connection Functions

	Miscellaneous Stream Functions

	Other Functions

	Miscellaneous Types

	Global Variables

	List of Log Modules

	Datagrams

	Internals
	Connection Management

Indices and tables

	Index

	Search Page

Getting Started

Supported Platforms

LSQUIC compiles and runs on Linux, Windows, FreeBSD, Mac OS, and Android.
It has been tested on i386, x86_64, and ARM (Raspberry Pi and Android).

Dependencies

LSQUIC library uses:

	zlib [https://www.zlib.net/];

	BoringSSL [https://boringssl.googlesource.com/boringssl/]; and

	ls-hpack [https://github.com/litespeedtech/ls-hpack] (as a Git submodule).

	ls-qpack [https://github.com/litespeedtech/ls-qpack] (as a Git submodule).

The accompanying demo command-line tools use libevent [https://libevent.org/].

What’s in the box

	src/liblsquic – the library

	bin – demo client and server programs

	tests – unit tests

Building

To build the library, follow instructions in the README [https://github.com/litespeedtech/lsquic/blob/master/README.md] file.

Demo Examples

Fetch Google home page:

./http_client -s www.google.com -p / -o version=Q050

Run your own server (it does not touch the filesystem, don’t worry):

./http_server -c www.example.com,fullchain.pem,privkey.pem -s 0.0.0.0:4433

Grab a page from your server:

./http_client -H www.example.com -s 127.0.0.1:4433 -p /

You can play with various options, of which there are many. Use
the -h command-line flag to see them.

Next steps

If you want to use LSQUIC in your program, check out the Tutorial and
the API Reference.

Internals covers some library internals.

Tutorial

Introduction

The LSQUIC library provides facilities for operating a QUIC (Google QUIC
or IETF QUIC) server or client with optional HTTP (or HTTP/3) functionality.
To do that, it specifies an application programming interface (API) and
exposes several basic object types to operate upon:

	engine;

	connection; and

	stream.

Engine

An engine manages connections, processes incoming packets, and schedules outgoing packets. It can be instantiated in either server or client mode. If your program needs to have both QUIC client and server functionality, instantiate two engines. (This is what we do in our LiteSpeed ADC server.)
In addition, HTTP mode can be turned on for gQUIC and HTTP/3 support.

Connection

A connection carries one or more streams, ensures reliable data delivery, and handles the protocol details.
In client mode, a connection is created using a function call, which we will cover later in the tutorial.
In server mode, by the time the user code gets a hold of the connection object, the handshake has already been completed successfully. This is not the case in client mode.

Stream

A connection can have several streams in parallel and many streams during its lifetime.
Streams do not exist by themselves; they belong to a connection. Streams are bidirectional and usually correspond to a request/response exchange - depending on the application protocol.
Application data is transmitted over streams.

HTTP Mode

The HTTP support is included directly into LSQUIC. The library hides the interaction between the HTTP application layer and the QUIC transport layer and presents a simple, unified way of sending and receiving HTTP messages. (By “unified way,” we mean between Google QUIC and HTTP/3). Behind the scenes, the library will compress and decompress HTTP headers, add and remove HTTP/3 stream framing, and operate the necessary control streams.

In the following sections, we will describe how to:

	initialize the library;

	configure and instantiate an engine object;

	send and receive packets; and

	work with connections and streams.

Include Files

In your source files, you need to include a single header, “lsquic.h”.
It pulls in an auxiliary file “lsquic_types.h”.

#include "lsquic.h"

Library Initialization

Before the first engine object is instantiated, the library must be
initialized using lsquic_global_init():

if (0 != lsquic_global_init(LSQUIC_GLOBAL_CLIENT|LSQUIC_GLOBAL_SERVER))
{
 exit(EXIT_FAILURE);
}
/* OK, do something useful */

This will initialize the crypto library, gQUIC server certificate cache, and, depending on the platform, monotonic timers.
If you plan to instantiate engines only in a single mode, client or server,
you can omit the appropriate flag.

After all engines have been destroyed and the LSQUIC library is no longer
going to be used, the global initialization can be undone:

lsquic_global_cleanup();
exit(EXIT_SUCCESS);

Engine Instantiation

Engine instantiation is performed by lsquic_engine_new():

/* Create an engine in server mode with HTTP behavior: */
lsquic_engine_t *engine
 = lsquic_engine_new(LSENG_SERVER|LSENG_HTTP, &engine_api);

The engine mode is selected by using the LSENG_SERVER flag.
If present, the engine will be in server mode; if not, the engine will
be in client mode. If you need both server and client functionality
in your program, instantiate two engines (or as many as you like).

Using the LSENG_HTTP flag enables the HTTP behavior: The library
hides the interaction between the HTTP application layer and the QUIC
transport layer and presents a simple, unified (between Google QUIC and
HTTP/3) way of sending and receiving HTTP messages. Behind the scenes,
the library will compress and uncompress HTTP headers, add and remove
HTTP/3 stream framing, and operate the necessary control streams.

Engine Configuration

The second argument to lsquic_engine_new() is a pointer to
a struct of type lsquic_engine_api. This structure lists
several user-specified function pointers that the engine is to use
to perform various functions. Mandatory among these are:

	function to set packets out, lsquic_engine_api.ea_packets_out;

	functions linked to connection and stream events,
lsquic_engine_api.ea_stream_if;

	function to look up certificate to use, lsquic_engine_api.ea_lookup_cert (in server mode); and

	function to fetch SSL context, lsquic_engine_api.ea_get_ssl_ctx (in server mode).

The minimal structure for a client will look like this:

lsquic_engine_api engine_api = {
 .ea_packets_out = send_packets_out,
 .ea_packets_out_ctx = (void *) sockfd, /* For example */
 .ea_stream_if = &stream_callbacks,
 .ea_stream_if_ctx = &some_context,
};

Engine Settings

Engine settings can be changed by specifying
lsquic_engine_api.ea_settings. There are many parameters
to tweak: supported QUIC versions, amount of memory dedicated to connections
and streams, various timeout values, and so on. See
Engine Settings for full details. If ea_settings is set
to NULL, the engine will use the defaults, which should be OK.

Receiving Packets

UDP datagrams are passed to the engine using the lsquic_engine_packet_in() function. This is the only way to do so.
A pointer to the UDP payload is passed along with the size of the payload.
Local and peer socket addresses are passed in as well.
The void “peer ctx” pointer is associated with the peer address. It gets passed to the function that sends outgoing packets and to a few other callbacks. In a standard setup, this is most likely the socket file descriptor, but it could be pointing to something else.
The ECN value is in the range of 0 through 3, as in RFC 3168.

/* 0: processed by real connection
 * 1: handled
 * -1: error: invalid arguments, malloc failure
 */
int
lsquic_engine_packet_in (lsquic_engine_t *,
 const unsigned char *udp_payload, size_t sz,
 const struct sockaddr *sa_local,
 const struct sockaddr *sa_peer,
 void *peer_ctx, int ecn);

Why specify local address

The local address is necessary because it becomes the source address of the outgoing packets. This is important in a multihomed configuration, when packets arriving at a socket can have different destination addresses. Changes in local and peer addresses are also used to detect changes in paths, such as path migration during the classic “parking lot” scenario or NAT rebinding. When path change is detected, QUIC connection performs special steps to validate the new path.

Sending Packets

The lsquic_engine_api.ea_packets_out is the function that gets
called when an engine instance has packets to send. It could look like
this:

/* Return number of packets sent or -1 on error */
static int
send_packets_out (void *ctx, const struct lsquic_out_spec *specs,
 unsigned n_specs)
{
 struct msghdr msg;
 int sockfd;
 unsigned n;

 memset(&msg, 0, sizeof(msg));
 sockfd = (int) (uintptr_t) ctx;

 for (n = 0; n < n_specs; ++n)
 {
 msg.msg_name = (void *) specs[n].dest_sa;
 msg.msg_namelen = sizeof(struct sockaddr_in);
 msg.msg_iov = specs[n].iov;
 msg.msg_iovlen = specs[n].iovlen;
 if (sendmsg(sockfd, &msg, 0) < 0)
 break;
 }

 return (int) n;
}

Note that the version above is very simple: it does not use local
address and ECN value specified in lsquic_out_spec.
These can be set using ancillary data in a platform-dependent way.

When an error occurs

When an error occurs, the value of errno is examined:

	EAGAIN (or EWOULDBLOCK) means that the packets could not be sent and to retry later. It is up to the caller to call lsquic_engine_send_unsent_packets() when sending can resume.

	EMSGSIZE means that a packet was too large. This occurs when lsquic send MTU probes. In that case, the engine will retry sending without the offending packet immediately.

	Any other error causes the connection whose packet could not be sent to be terminated.

Outgoing Packet Specification

struct lsquic_out_spec
{
 struct iovec *iov;
 size_t iovlen;
 const struct sockaddr *local_sa;
 const struct sockaddr *dest_sa;
 void *peer_ctx;
 int ecn; /* 0 - 3; see RFC 3168 */
};

Each packet specification in the array given to the “packets out” function looks like this. In addition to the packet payload, specified via an iovec, the specification contains local and remote addresses, the peer context associated with the connection (which is just a file descriptor in tut.c), and ECN.
The reason for using iovec in the specification is that a UDP datagram may contain several QUIC packets. QUIC packets with long headers, which are used during QUIC handshake, can be coalesced and lsquic tries to do that to reduce the number of datagrams needed to be sent. On the incoming side, lsquic_engine_packet_in() takes care of splitting incoming UDP datagrams into individual packets.

When to process connections

Now that we covered how to initialize the library, instantiate an engine, and send and receive packets, it is time to see how to make the engine tick. “LSQUIC” has the concept of “tick,” which is a way to describe a connection doing something productive. Other verbs could have been “kick,” “prod,” “poke,” and so on, but we settled on “tick.”

There are several ways for a connection to do something productive. When a connection can do any of these things, it is “tickable:”

	There are incoming packets to process

	A user wants to read from a stream and there is data that can be read

	A user wants to write to a stream and the stream is writeable

	A stream has buffered packets generated when a user has written to stream outside of the regular callback mechanism. (This is allowed as an optimization: sometimes data becomes available and it’s faster to just write to stream than to buffer it in the user code and wait for the “on write” callback.)

	Internal QUIC protocol or LSQUIC maintenance actions need to be taken, such as sending out a control frame or recycling a stream.

/* Returns true if there are connections to be processed, in
 * which case `diff' is set to microseconds from current time.
 */
int
lsquic_engine_earliest_adv_tick (lsquic_engine_t *, int *diff);

There is a single function,
lsquic_engine_earliest_adv_tick(), that can tell the user whether and when there is at least one connection managed by an engine that needs to be ticked. “Adv” in the name of the function stands for “advisory,” meaning that you do not have to process connections at that exact moment; it is simply recommended. If there is a connection to be ticked, the function will return a true value and diff will be set to a relative time to when the connection is to be ticked. This value may be negative, which means that the best time to tick the connection has passed.
The engine keeps all connections in several data structures. It tracks each connection’s timers and knows when it needs to fire.

Example with libev

void
process_conns (struct tut *tut)
{
 ev_tstamp timeout;
 int diff;
 ev_timer_stop();
 lsquic_engine_process_conns(engine);
 if (lsquic_engine_earliest_adv_tick(engine, &diff) {
 if (diff > 0)
 timeout = (ev_tstamp) diff / 1000000; /* To seconds */
 else
 timeout = 0.;
 ev_timer_init(timeout)
 ev_timer_start();
 }
}

Here is a simple example that uses the libev library. First, we stop the timer and process connections. Then, we query the engine to tell us when the next advisory tick time is. Based on that, we calculate the timeout to reinitialize the timer with and start the timer.
If diff is negative, we set timeout to zero.
When the timer expires (not shown here), it simply calls this process_conns() again.

Note that one could ignore the advisory tick time and simply process connections every few milliseconds and it will still work. This, however, will result in worse performance.

Processing Connections

Recap:
To process connections, call lsquic_engine_process_conns().
This will call necessary callbacks to read from and write to streams
and send packets out. Call lsquic_engine_process_conns() when advised
by lsquic_engine_earliest_adv_tick().

Do not call lsquic_engine_process_conns() from inside callbacks, for
this function is not reentrant.

Another function that sends packets is
lsquic_engine_send_unsent_packets(). Call it if there was a
previous failure to send out all packets

Required Engine Callbacks

Now we continue to initialize our engine instance. We have covered the callback to send out packets. This is one of the required engine callbacks.
Other required engine callbacks are a set of stream and connection callbacks that get called on various events in then connections and stream lifecycles and a callback to get the default TLS context.

struct lsquic_engine_api engine_api = {
 /* --- 8< --- snip --- 8< --- */
 .ea_stream_if = &stream_callbacks,
 .ea_stream_if_ctx = &some_context,
 .ea_get_ssl_ctx = get_ssl_ctx, /* Server only */
};

Optional Callbacks

Here we mention some optional callbacks. While they are not covered by
this tutorial, it is good to know that they are available.

	Looking up certificate and TLS context by SNI.

	Callbacks to control memory allocation for outgoing packets. These are useful when sending packets using a custom library. For example, when all packets must be in contiguous memory.

	Callbacks to observe connection ID lifecycle. These are useful in multi-process applications.

	Callbacks that provide access to a shared-memory hash. This is also used in multi-process applications.

	HTTP header set processing. These callbacks may be used in HTTP mode for HTTP/3 and Google QUIC.

Please refer to Engine Settings for details.

Stream and connection callbacks

Stream and connection callbacks are the way that the library communicates with user code. Some of these callbacks are mandatory; others are optional.
They are all collected in lsquic_stream_if (“if” here stands
for “interface”).
The mandatory callbacks include calls when connections and streams are created and destroyed and callbacks when streams can be read from or written to.
The optional callbacks are used to observe some events in the connection lifecycle, such as being informed when handshake has succeeded (or failed) or when a goaway signal is received from peer.

struct lsquic_stream_if
{
 /* Mandatory callbacks: */
 lsquic_conn_ctx_t *(*on_new_conn)(void *stream_if_ctx,
 lsquic_conn_t *c);
 void (*on_conn_closed)(lsquic_conn_t *c);
 lsquic_stream_ctx_t *
 (*on_new_stream)(void *stream_if_ctx, lsquic_stream_t *s);
 void (*on_read) (lsquic_stream_t *s, lsquic_stream_ctx_t *h);
 void (*on_write) (lsquic_stream_t *s, lsquic_stream_ctx_t *h);
 void (*on_close) (lsquic_stream_t *s, lsquic_stream_ctx_t *h);

 /* Optional callbacks: */
 void (*on_goaway_received)(lsquic_conn_t *c);
 void (*on_hsk_done)(lsquic_conn_t *c, enum lsquic_hsk_status s);
 void (*on_new_token)(lsquic_conn_t *c, const unsigned char *token,
 void (*on_sess_resume_info)(lsquic_conn_t *c, const unsigned char *, size_t);
};

On new connection

When a connection object is created, the “on new connection” callback is called. In server mode, the handshake is already known to have succeeded; in client mode, the connection object is created before the handshake is attempted. The client can tell when handshake succeeds or fails by relying on the optional “handshake is done” callback or the “on connection close” callback.

/* Return pointer to per-connection context. OK to return NULL. */
static lsquic_conn_ctx_t *
my_on_new_conn (void *ea_stream_if_ctx, lsquic_conn_t *conn)
{
 struct some_context *ctx = ea_stream_if_ctx;
 struct my_conn_ctx *my_ctx = my_ctx_new(ctx);
 if (ctx->is_client)
 /* Need a stream to send request */
 lsquic_conn_make_stream(conn);
 return (void *) my_ctx;
}

In the made-up example above, a new per-connection context is allocated and returned. This context is then associated with the connection and can be retrieved using a dedicated function. Note that it is OK to return a NULL pointer.
Note that in client mode, this is a good place to request that the connection make a new stream by calling lsquic_conn_make_stream(). The connection will create a new stream when handshake succeeds.

On new stream

QUIC allows either endpoint to create streams and send and receive data on them. There are unidirectional and bidirectional streams. Thus, there are four stream types. In our tutorial, however, we use the familiar paradigm of the client sending requests to the server using bidirectional stream.

On the server, new streams are created when client requests arrive. On the client, streams are created when possible after the user code has requested stream creation by calling lsquic_conn_make_stream().

/* Return pointer to per-connection context. OK to return NULL. */
static lsquic_stream_ctx_t *
my_on_new_stream (void *ea_stream_if_ctx, lsquic_stream_t *stream) {
 struct some_context *ctx = ea_stream_if_ctx;
 /* Associate some data with this stream: */
 struct my_stream_ctx *stream_ctx
 = my_stream_ctx_new(ea_stream_if_ctx);
 stream_ctx->stream = stream;
 if (ctx->is_client)
 lsquic_stream_wantwrite(stream, 1);
 return (void *) stream_ctx;
}

In a pattern similar to the “on new connection” callback, a per-stream context can be created at this time. The function returns this context and other stream callbacks - “on read,” “on write,” and “on close” - will be passed a pointer to it. As before, it is OK to return NULL.
You can register an interest in reading from or writing to the stream by using a “want read” or “want write” function. Alternatively, you can simply read or write; be prepared that this may fail and you have to try again in the “regular way.” We talk about that next.

On read

When the “on read” callback is called, there is data to be read from stream, end-of-stream has been reached, or there is an error.

static void
my_on_read (lsquic_stream_t *stream, lsquic_stream_ctx_t *h) {
 struct my_stream_ctx *my_stream_ctx = (void *) h;
 unsigned char buf[BUFSZ];

 ssize_t nr = lsquic_stream_read(stream, buf, sizeof(buf));
 /* Do something with the data.... */
 if (nr == 0) /* EOF */ {
 lsquic_stream_shutdown(stream, 0);
 lsquic_stream_wantwrite(stream, 1); /* Want to reply */
 }
}

To read the data or to collect the error, call lsquic_stream_read(). If a negative value is returned, examine errno. If it is not EWOULDBLOCK, then an error has occurred, and you should close the stream. Here, an error means an application error, such as peer resetting the stream. A protocol error or an internal library error (such as memory allocation failure) lead to the connection being closed outright.
To reiterate, the “on read” callback is called only when the user has registered interest in reading from the stream.

On write

The “on write” callback is called when the stream can be written to. At this point, you should be able to write at least a byte to the stream.
As with the “on read” callback, for this callback to be called, the user must have registered interest in writing to stream using lsquic_stream_wantwrite().

static void
my_on_write (lsquic_stream_t *stream, lsquic_stream_ctx_t *h) {
 struct my_stream_ctx *my_stream_ctx = (void *) h;
 ssize_t nw = lsquic_stream_write(stream,
 my_stream_ctx->resp, my_stream_ctx->resp_sz);
 if (nw == my_stream_ctx->resp_sz)
 lsquic_stream_close(stream);
}

By default, “on read” and “on write” callbacks will be called in a loop as long as there is data to read or the stream can be written to. If you are done reading from or writing to stream, you should either shut down the appropriate end, close the stream, or unregister your interest. The library implements a circuit breaker to stop would-be infinite loops when no reading or writing progress is made. Both loop dispatch and the circuit breaker are configurable (see lsquic_engine_settings.es_progress_check and lsquic_engine_settings.es_rw_once).

On stream close

When reading and writing ends of the stream have been closed, the “on close” callback is called. After this function returns, pointers to the stream become invalid. (The library destroys the stream object when it deems proper.)
This is a good place to perform necessary cleanup.

static void
my_on_close (lsquic_stream_t *stream, lsquic_stream_ctx_t *h) {
 lsquic_conn_t *conn = lsquic_stream_conn(stream);
 struct my_conn_ctx *my_ctx = lsquic_conn_get_ctx(conn);
 if (!has_more_reqs_to_send(my_ctx)) /* For example */
 lsquic_conn_close(conn);
 free(h);
}

In the made-up example above, we free the per-stream context allocated in the “on new stream” callback and we may close the connection.

On connection close

When either lsquic_conn_close() has been called; or the peer has closed the connection; or an error has occurred, the “on connection close” callback is called. At this point, it is time to free the per-connection context, if any.

static void
my_on_conn_closed (lsquic_conn_t *conn) {
 struct my_conn_ctx *my_ctx = lsquic_conn_get_ctx(conn);
 struct some_context *ctx = my_ctx->some_context;

 --ctx->n_conns;
 if (0 == ctx->n_conn && (ctx->flags & CLOSING))
 exit_event_loop(ctx);

 free(my_ctx);
}

In the example above, you see the call to lsquic_conn_get_ctx(). This returns the pointer returned by the “on new connection” callback.

Using Streams

To reduce buffering, most of the time bytes written to stream are written into packets directly. Bytes are buffered in the stream until a full packet can be created. Alternatively, one could flush the data by calling lsquic_stream_flush().
It is impossible to write more data than the congestion window. This prevents excessive buffering inside the library.
Inside the “on read” and “on write” callbacks, reading and writing should succeed. The exception is error collection inside the “on read” callback.
Outside of the callbacks, be ready to handle errors. For reading, it is -1 with EWOULDBLOCK errno. For writing, it is the return value of 0.

More stream functions

Here are a few more useful stream functions.

/* Flush any buffered data. This triggers packetizing even a single
 * byte into a separate frame.
 */
int
lsquic_stream_flush (lsquic_stream_t *);

/* Possible values for how are 0, 1, and 2. See shutdown(2). */
int
lsquic_stream_shutdown (lsquic_stream_t *, int how);

int
lsquic_stream_close (lsquic_stream_t *);

As mentioned before, calling lsquic_stream_flush() will cause the stream to packetize the buffered data. Note that it may not happen immediately, as there may be higher-priority writes pending or there may not be sufficient congestion window to do so. Calling “flush” only schedules writing to packets.

lsquic_stream_shutdown() and lsquic_stream_close() mimic the interface of the “shutdown” and “close” socket functions. After both read and write ends of a stream are closed, the “on stream close” callback will soon be called.

Stream return values

The stream read and write functions are modeled on the standard UNIX read and write functions, including the use of the errno. The most important of these error codes are EWOULDBLOCK and ECONNRESET because you may encounter these even if you structure your code correctly. Other errors typically occur when the user code does something unexpected.

Return value of 0 is different for reads and writes. For reads, it means that EOF has been reached and you need to stop reading from the stream. For writes, it means that you should try writing later.

If writing to stream returns an error, it may mean an internal error. If the error is not recoverable, the library will abort the connection; if it is recoverable (the only recoverable error is failure to allocate memory), attempting to write later may succeed.

Scatter/gather stream functions

There is the scatter/gather way to read from and write to stream and the interface is similar to the usual “readv” and “writev” functions. All return values and error codes are the same as in the stream read and write functions we have just discussed. Those are actually just wrappers around the scatter/gather versions.

ssize_t
lsquic_stream_readv (lsquic_stream_t *, const struct iovec *,
 int iovcnt);
ssize_t
lsquic_stream_writev (lsquic_stream_t *, const struct iovec *,
 int count);

Read using a callback

The scatter/gather functions themselves are also wrappers. LSQUIC provides stream functions that skip intermediate buffering. They are used for zero-copy stream processing.

ssize_t
lsquic_stream_readf (lsquic_stream_t *,
 size_t (*readf)(void *ctx, const unsigned char *, size_t len, int fin),
 void *ctx);

The second argument to lsquic_stream_readf() is a callback that
returns the number of bytes processed. The callback is passed:

	Pointer to user-supplied context;

	Pointer to the data;

	Data size (can be zero); and

	Indicator whether the FIN follows the data.

If callback returns 0 or value smaller than len(), reading stops.

Read with callback: Example 1

Here is the first example of reading from stream using a callback. Now the process of reading from stream
is split into two functions.

static void
tut_client_on_read_v1 (lsquic_stream_t *stream, lsquic_stream_ctx_t *h)
{
 struct tut *tut = (struct tut *) h;
 size_t nread = lsquic_stream_readf(stream, tut_client_readf_v1, NULL);
 if (nread == 0)
 {
 LOG("read to end-of-stream: close and read from stdin again");
 lsquic_stream_shutdown(stream, 0);
 ev_io_start(tut->tut_loop, &tut->tut_u.c.stdin_w);
 }
 /* ... */
}

Here, we see the lsquic_stream_readf() call. The return value is the same as the other read functions.
Because in this example there is no extra information to pass to the callback (we simply print data to stdout),
the third argument is NULL.

static size_t
tut_client_readf_v1 (void *ctx, const unsigned char *data,
 size_t len, int fin)
{
 if (len)
 {
 fwrite(data, 1, len, stdout);
 fflush(stdout);
 }
 return len;
}

Here is the callback itself. You can see it is very simple. If there is data to be processed,
it is printed to stdout.

Note that the data size (len above) can be anything. It is not limited by UDP datagram size. This is because when incoming STREAM frames pass some fragmentation threshold, LSQUIC begins to copy incoming STREAM data to a data structure that is impervious to stream fragmentation attacks. Thus, it is possible for the callback to pass a pointer to data that is over 3KB in size. The implementation may change, so again, no guarantees.
When the fourth argument, fin, is true, this indicates that the incoming data ends after len bytes have been read.

Read with callback: Example 2: Use FIN

The FIN indicator passed to the callback gives us yet another way to detect end-of-stream.
The previous version checked the return value of lsquic_stream_readf() to check for EOS.
Instead, we can use fin in the callback.

The second zero-copy read example is a little more efficient as it saves us
an extra call to tut_client_on_read_v2.
Here, we package pointers to the tut struct and stream into a special struct and pass it to
lsquic_stream_readf().

struct client_read_v2_ctx { struct tut *tut; lsquic_stream_t *stream; };

static void
tut_client_on_read_v2 (lsquic_stream_t *stream,
 lsquic_stream_ctx_t *h)
{
 struct tut *tut = (struct tut *) h;
 struct client_read_v2_ctx v2ctx = { tut, stream, };
 ssize_t nread = lsquic_stream_readf(stream, tut_client_readf_v2,
 &v2ctx);
 if (nread < 0)
 /* ERROR */
}

Now the callback becomes more complicated, as we moved the logic to stop reading from stream into it. We need pointer to both stream and user context when “fin” is true. In that case, we call lsquic_stream_shutdown() and begin reading from stdin again to grab the next line of input.

static size_t
tut_client_readf_v2 (void *ctx, const unsigned char *data,
 size_t len, int fin)
{
 struct client_read_v2_ctx *v2ctx = ctx;
 if (len)
 fwrite(data, 1, len, stdout);
 if (fin)
 {
 fflush(stdout);
 LOG("read to end-of-stream: close and read from stdin again");
 lsquic_stream_shutdown(v2ctx->stream, 0);
 ev_io_start(v2ctx->tut->tut_loop, &v2ctx->tut->tut_u.c.stdin_w);
 }
 return len;
}

Writing to stream: Example 1

Now let’s consider writing to stream.

static void
tut_server_on_write_v0 (lsquic_stream_t *stream, lsquic_stream_ctx_t *h)
{
 struct tut_server_stream_ctx *const tssc = (void *) h;
 ssize_t nw = lsquic_stream_write(stream,
 tssc->tssc_buf + tssc->tssc_off, tssc->tssc_sz - tssc->tssc_off);
 if (nw > 0)
 {
 tssc->tssc_off += nw;
 if (tssc->tssc_off == tssc->tssc_sz)
 lsquic_stream_close(stream);
 /* ... */
}

Here, we call lsquic_stream_write() directly. If writing succeeds and we reached the
end of the buffer we wanted to write, we close the stream.

Write using callbacks

To write using a callback, we need to use lsquic_stream_writef().

struct lsquic_reader {
 /* Return number of bytes written to buf */
 size_t (*lsqr_read) (void *lsqr_ctx, void *buf, size_t count);
 /* Return number of bytes remaining in the reader. */
 size_t (*lsqr_size) (void *lsqr_ctx);
 void *lsqr_ctx;
};

/* Return umber of bytes written or -1 on error. */
ssize_t
lsquic_stream_writef (lsquic_stream_t *, struct lsquic_reader *);

We must specify not only the function that will perform the copy, but also the function that will return the number of bytes remaining. This is useful in situations where the size of the data source may change. For example, an underlying file may change size.
The lsquic_reader.lsqr_read callback will be called in a loop until stream can write no more or until lsquic_reader.lsqr_size returns zero.
The return value of lsquic_stream_writef is the same as lsquic_stream_write() and lsquic_stream_writev(), which are just wrappers around the “writef” version.

Writing to stream: Example 2

Here is the second version of the “on write” callback. It uses lsquic_stream_writef().

static void
tut_server_on_write_v1 (lsquic_stream_t *stream, lsquic_stream_ctx_t *h)
{
 struct tut_server_stream_ctx *const tssc = (void *) h;
 struct lsquic_reader reader = { tssc_read, tssc_size, tssc, };
 ssize_t nw = lsquic_stream_writef(stream, &reader);
 if (nw > 0 && tssc->tssc_off == tssc->tssc_sz)
 lsquic_stream_close(stream);
 /* ... */
}

The reader struct is initialized with pointers to read and size functions and this struct is passed
to the “writef” function.

static size_t
tssc_size (void *ctx)
{
 struct tut_server_stream_ctx *tssc = ctx;
 return tssc->tssc_sz - tssc->tssc_off;
}

The size callback simply returns the number of bytes left.

static size_t
tssc_read (void *ctx, void *buf, size_t count)
{
 struct tut_server_stream_ctx *tssc = ctx;

 if (count > tssc->tssc_sz - tssc->tssc_off)
 count = tssc->tssc_sz - tssc->tssc_off;
 memcpy(buf, tssc->tssc_buf + tssc->tssc_off, count);
 tssc->tssc_off += count;
 return count;
}

The read callback (so called because you read data from the source) writes no more than count bytes
to memory location pointed by buf and returns the number of bytes copied.
In our case, count is never larger than the number of bytes still left to write.
This is because the caller - the LSQUIC library - gets the value of count from the lsqr_size() callback. When reading from a file descriptor, on the other hand, this can very well happen that you don’t have as much data to write as you thought you had.

Client: making connection

We now switch our attention to making a QUIC connection. The function lsquic_engine_connect() does that. This function has twelve arguments. (These arguments have accreted over time.)

lsquic_conn_t *
lsquic_engine_connect (lsquic_engine_t *,
 enum lsquic_version, /* Set to N_LSQVER for default */
 const struct sockaddr *local_sa,
 const struct sockaddr *peer_sa,
 void *peer_ctx,
 lsquic_conn_ctx_t *conn_ctx,
 const char *hostname, /* Used for SNI */
 unsigned short base_plpmtu, /* 0 means default */
 const unsigned char *sess_resume, size_t sess_resume_len,
 const unsigned char *token, size_t token_sz);

	The first argument is the pointer to the engine instance.

	The second argument is the QUIC version to use.

	The third and fourth arguments specify local and destination addresses, respectively.

	The fifth argument is the so-called “peer context.”

	The sixth argument is the connection context. This is used if you need to pass a pointer to the “on new connection” callback. This context is overwritten by the return value of the “on new connection” callback.

	The argument “hostname,” which is the seventh argument, is used for SNI. This argument is optional, just as the rest of the arguments that follow.

	The eighth argument is the initial maximum size of the UDP payload. This will be the base PLPMTU if DPLPMTUD is enabled. Specifying zero, or default, is the safe way to go: lsquic will pick a good starting value.

	The next two arguments allow one to specify a session resumption information to establish a connection faster. In the case of IETF QUIC, this is the TLS Session Ticket. To get this ticket, specify the lsquic_stream_if.on_sess_resume_info callback.

	The last pair of arguments is for specifying a token to try to prevent a potential stateless retry from the server. The token is learned in a previous session. See the optional callback lsquic_stream_if.on_new_token.

tut.tut_u.c.conn = lsquic_engine_connect(
 tut.tut_engine, N_LSQVER,
 (struct sockaddr *) &tut.tut_local_sas, &addr.sa,
 (void *) (uintptr_t) tut.tut_sock_fd, /* Peer ctx */
 NULL, NULL, 0, NULL, 0, NULL, 0);
if (!tut.tut_u.c.conn)
{
 LOG("cannot create connection");
 exit(EXIT_FAILURE);
}
tut_process_conns(&tut);

Here is an example from a tutorial program. The connect call is a lot less intimidating in real life, as half the arguments are set to zero.
We pass a pointer to the engine instance, N_LSQVER to let the engine pick the version to use and the two socket addresses.
The peer context is simply the socket file descriptor cast to a pointer.
This is what is passed to the “send packets out” callback.

Specifying QUIC version

QUIC versions in LSQUIC are gathered in an enum, lsquic_version, and have an arbitrary value.

enum lsquic_version {
 LSQVER_043, LSQVER_046, LSQVER_050, /* Google QUIC */
 LSQVER_ID27, LSQVER_ID28, LSQVER_ID29, /* IETF QUIC */
 /* ...some special entries skipped */
 N_LSQVER /* <====================== Special value */
};

The special value “N_LSQVER” is used to let the engine pick the QUIC version.
It picks the latest non-experimental version, so in this case it picks ID-29.
(Experimental from the point of view of the library.)

Because version enum values are small – and that is by design – a list of
versions can be passed around as bitmasks.

/* This allows list of versions to be specified as bitmask: */
es_versions = (1 << LSQVER_ID28) | (1 << LSQVER_ID29);

This is done, for example, when
specifying list of versions to enable in engine settings using lsquic_engine_api.ea_versions.
There are a couple of more places in the API where this technique is used.

Server callbacks

The server requires SSL callbacks to be present. The basic required callback is lsquic_engine_api.ea_get_ssl_ctx. It is used to get a pointer to an initialized SSL_CTX.

typedef struct ssl_ctx_st * (*lsquic_lookup_cert_f)(
 void *lsquic_cert_lookup_ctx, const struct sockaddr *local,
 const char *sni);

struct lsquic_engine_api {
 lsquic_lookup_cert_f ea_lookup_cert;
 void *ea_cert_lu_ctx;
 struct ssl_ctx_st * (*ea_get_ssl_ctx)(void *peer_ctx);
 /* (Other members of the struct are not shown) */
};

In case SNI is used, LSQUIC will call lsquic_engine_api.ea_lookup_cert.
For example, SNI is required in HTTP/3.
In our web server [https://www.litespeedtech.com/products], each virtual host has its own SSL context. Note that besides the SNI string, the callback is also given the local socket address. This makes it possible to implement a flexible lookup mechanism.

Engine settings

Besides the engine API struct passed to the engine constructor, there is also an engine settings struct, lsquic_engine_settings. lsquic_engine_api.ea_settings in the engine API struct
can be pointed to a custom settings struct. By default, this pointer is NULL.
In that case, the engine uses default settings.

There are many settings, controlling everything from flow control windows to the number of times an “on read” callback can be called in a loop before it is deemed an infinite loop and the circuit breaker is tripped. To make changing default settings values easier, the library provides functions to initialize the settings struct to defaults and then to check these values for sanity.

Settings helper functions

/* Initialize `settings' to default values */
void
lsquic_engine_init_settings (struct lsquic_engine_settings *,
 /* Bitmask of LSENG_SERVER and LSENG_HTTP */
 unsigned lsquic_engine_flags);

/* Check settings for errors, return 0 on success, -1 on failure. */
int
lsquic_engine_check_settings (const struct lsquic_engine_settings *,
 unsigned lsquic_engine_flags,
 /* Optional, can be NULL: */
 char *err_buf, size_t err_buf_sz);

The first function is lsquic_engine_init_settings(), which does just that.
The second argument is a bitmask to specify whether the engine is in server mode
and whether HTTP mode is turned on. These should be the same flags as those
passed to the engine constructor.

Once you have initialized the settings struct in this manner, change the setting
or settings you want and then call lsquic_engine_check_settings(). The
first two arguments are the same as in the initializer. The third and fourth
argument are used to pass a pointer to a buffer into which a human-readable error
string can be placed.

The checker function does only the basic sanity checks. If you really set out
to misconfigure LSQUIC, you can. On the bright side, each setting is clearly
documented (see Engine Settings). Most settings are standalone;
when there is interplay between them, it is also documented.
Test before deploying!

Settings example

The example is adapted from a tutorial program. Here, command-line options
are processed and appropriate options is set. The first time the -o
flag is encountered, the settings struct is initialized. Then the argument
is parsed to see which setting to alter.

while (/* getopt */)
{
 case 'o': /* For example: -o version=h3-27 -o cc_algo=2 */
 if (!settings_initialized) {
 lsquic_engine_init_settings(&settings,
 cert_file || key_file ? LSENG_SERVER : 0);
 settings_initialized = 1;
 }
 /* ... */
 else if (0 == strncmp(optarg, "cc_algo=", val - optarg))
 settings.es_cc_algo = atoi(val);
 /* ... */
}

/* Check settings */
if (0 != lsquic_engine_check_settings(&settings,
 tut.tut_flags & TUT_SERVER ? LSENG_SERVER : 0,
 errbuf, sizeof(errbuf)))
{
 LOG("invalid settings: %s", errbuf);
 exit(EXIT_FAILURE);
}

/* ... */
eapi.ea_settings = &settings;

After option processing is completed, the settings are checked. The error
buffer is used to log a configuration error.

Finally, the settings struct is pointed to by the engine API struct before
the engine constructor is called.

Logging

LSQUIC provides a simple logging interface using a single callback function.
By default, no messages are logged. This can be changed by calling lsquic_logger_init().
This will set a library-wide logger callback function.

void lsquic_logger_init(const struct lsquic_logger_if *,
 void *logger_ctx, enum lsquic_logger_timestamp_style);

struct lsquic_logger_if {
 int (*log_buf)(void *logger_ctx, const char *buf, size_t len);
};

enum lsquic_logger_timestamp_style { LLTS_NONE, LLTS_HHMMSSMS,
 LLTS_YYYYMMDD_HHMMSSMS, LLTS_CHROMELIKE, LLTS_HHMMSSUS,
 LLTS_YYYYMMDD_HHMMSSUS, N_LLTS };

You can instruct the library to generate a timestamp and include it as part of the message.
Several timestamp formats are available. Some display microseconds, some do not; some
display the date, some do not. One of the most useful formats is “chromelike,”
which matches the somewhat weird timestamp format used by Chromium. This makes it easy to
compare the two logs side by side.

There are eight log levels in LSQUIC: debug, info, notice, warning, error, alert, emerg,
and crit.
These correspond to the usual log levels. (For example, see syslog(3)). Of these, only five are used: debug, info, notice, warning, and error. Usually, warning and error messages are printed when there is a bug in the library or something very unusual has occurred. Memory allocation failures might elicit a warning as well, to give the operator a heads up.

LSQUIC possesses about 40 logging modules. Each module usually corresponds to a single piece
of functionality in the library. The exception is the “event” module, which logs events of note in many modules.
There are two functions to manipulate which log messages will be generated.

/* Set log level for all modules */
int
lsquic_set_log_level (const char *log_level);

/* Set log level per module "event=debug" */
int
lsquic_logger_lopt (const char *optarg);

The first is lsquic_set_log_level(). It sets the same log level for each module.
The second is lsquic_logger_lopt(). This function takes a comma-separated list of name-value pairs. For example, “event=debug.”

Logging Example

The following example is adapted from a tutorial program. In the program, log messages
are written to a file handle. By default, this is the standard error. One can change
that by using the “-f” command-line option and specify the log file.

static int
tut_log_buf (void *ctx, const char *buf, size_t len) {
 FILE *out = ctx;
 fwrite(buf, 1, len, out);
 fflush(out);
 return 0;
}
static const struct lsquic_logger_if logger_if = { tut_log_buf, };

lsquic_logger_init(&logger_if, s_log_fh, LLTS_HHMMSSUS);

tut_log_buf() returns 0, but the truth is that the return value is ignored.
There is just nothing for the library to do when the user-supplied log function fails!

case 'l': /* e.g. -l event=debug,cubic=info */
 if (0 != lsquic_logger_lopt(optarg)) {
 fprintf(stderr, "error processing -l option\n");
 exit(EXIT_FAILURE);
 }
 break;
case 'L': /* e.g. -L debug */
 if (0 != lsquic_set_log_level(optarg)) {
 fprintf(stderr, "error processing -L option\n");
 exit(EXIT_FAILURE);
 }
 break;

Here you can see how we use -l and -L command-line options to call one of
the two log level functions. These functions can fail if the incorrect log level
or module name is passed. Both log level and module name are treated in case-insensitive manner.

Sample log messages

When log messages are turned on, you may see something like this in your log file (timestamps and
log levels are elided for brevity):

[QUIC:B508E8AA234E0421] event: generated STREAM frame: stream 0, offset: 0, size: 3, fin: 1
[QUIC:B508E8AA234E0421-0] stream: flushed to or past required offset 3
[QUIC:B508E8AA234E0421] event: sent packet 13, type Short, crypto: forw-secure, size 32, frame types: STREAM, ecn: 0, spin: 0; kp: 0, path: 0, flags: 9470472
[QUIC:B508E8AA234E0421] event: packet in: 15, type: Short, size: 44; ecn: 0, spin: 0; path: 0
[QUIC:B508E8AA234E0421] rechist: received 15
[QUIC:B508E8AA234E0421] event: ACK frame in: [13-9]
[QUIC:B508E8AA234E0421] conn: about to process QUIC_FRAME_STREAM frame
[QUIC:B508E8AA234E0421] event: STREAM frame in: stream 0; offset 0; size 3; fin: 1
[QUIC:B508E8AA234E0421-0] stream: received stream frame, offset 0x0, len 3; fin: 1
[QUIC:B508E8AA234E0421-0] di: FIN set at 3

Here we see the connection ID, B508E8AA234E0421, and logging for modules “event”, “stream”, “rechist”
(that stands for “receive history”), “conn”, and “di” (the “data in” module). When the connection ID is
followed by a dash and that number, the number is the stream ID. Note that stream ID is logged not just
for the stream, but for some other modules as well.

Key logging and Wireshark

Wireshark [https://www.wireshark.org/] supports IETF QUIC. The developers have been very good at keeping up with latest versions.
You will need version 3.3 of Wireshark to support Internet-Draft 29. Support for HTTP/3 is in progress.

LSQUIC supports exporting TLS secrets. For that, you need to specify a set of function pointers via
lsquic_engine_api.ea_keylog_if.

/* Secrets are logged per connection. Interface to open file (handle),
 * log lines, and close file.
 */
struct lsquic_keylog_if {
 void * (*kli_open) (void *keylog_ctx, lsquic_conn_t *);
 void (*kli_log_line) (void *handle, const char *line);
 void (*kli_close) (void *handle);
};

struct lsquic_engine_api {
 /* --- 8< --- snip --- 8< --- */
 const struct lsquic_keylog_if *ea_keylog_if;
 void *ea_keylog_ctx;
};

There are three functions: one to open a file, one to write a line into the file, and one to close the file. The lines are not interpreted.
In the engine API struct, there are two members to set: one is the pointer to the struct with the function pointers, and the other is the context passed to “kli_open” function.

Key logging example

static void *
keylog_open (void *ctx, lsquic_conn_t *conn)
{
 const lsquic_cid_t *cid;
 FILE *fh;
 int sz;
 unsigned i;
 char id_str[MAX_CID_LEN * 2 + 1];
 char path[PATH_MAX];
 static const char b2c[16] = "0123456789ABCDEF";

 cid = lsquic_conn_id(conn);
 for (i = 0; i < cid->len; ++i)
 {
 id_str[i * 2 + 0] = b2c[cid->idbuf[i] >> 4];
 id_str[i * 2 + 1] = b2c[cid->idbuf[i] & 0xF];
 }
 id_str[i * 2] = '\0';
 sz = snprintf(path, sizeof(path), "/secret_dir/%s.keys", id_str);
 if ((size_t) sz >= sizeof(path))
 {
 LOG("WARN: %s: file too long", __func__);
 return NULL;
 }
 fh = fopen(path, "wb");
 if (!fh)
 LOG("WARN: could not open %s for writing: %s", path, strerror(errno));
 return fh;
}

static void
keylog_log_line (void *handle, const char *line)
{
 fputs(line, handle);
 fputs("\n", handle);
 fflush(handle);
}

static void
keylog_close (void *handle)
{
 fclose(handle);
}

The function to open the file is passed the connection object. It can be used to generate a filename
based on the connection ID.
We see that the line logger simply writes the passed C string to the filehandle and appends a newline.

Wireshark screenshot

After jumping through those hoops, our reward is a decoded QUIC trace in Wireshark!

[image: _images/wireshark-screenshot.png]
Here, we highlighted the STREAM frame payload.
Other frames in view are ACK and TIMESTAMP frames.
In the top panel with the packet list, you can see that frames are listed after the packet number.
Another interesting item is the DCID. This stands for “Destination Connection ID,” and you can
see that there are two different values there. This is because the two peers of the QUIC connection
place different connection IDs in the packets!

Connection IDs

A QUIC connection has two sets of connection IDs: source connection IDs and destination connection IDs. The source connection IDs set is what the peer uses to place in QUIC packets; the destination connection IDs is what this endpoint uses to include in the packets it sends to the peer. One’s source CIDs is the other’s destination CIDs and vice versa.
What interesting is that either side of the QUIC connection may change the DCID. Use CIDs with care.

#define MAX_CID_LEN 20

typedef struct lsquic_cid
{
 uint_fast8_t len;
 union {
 uint8_t buf[MAX_CID_LEN];
 uint64_t id;
 } u_cid;
#define idbuf u_cid.buf
} lsquic_cid_t;

#define LSQUIC_CIDS_EQ(a, b) ((a)->len == 8 ? \
 (b)->len == 8 && (a)->u_cid.id == (b)->u_cid.id : \
 (a)->len == (b)->len && 0 == memcmp((a)->idbuf, (b)->idbuf, (a)->len))

The LSQUIC representation of a CID is the struct above. The CID can be up to 20 bytes in length.
By default, LSQUIC uses 8-byte CIDs to speed up comparisons.

Get this-and-that API

Here are a few functions to get different LSQUIC objects from other objects.

const lsquic_cid_t *
lsquic_conn_id (const lsquic_conn_t *);

lsquic_conn_t *
lsquic_stream_conn (const lsquic_stream_t *);

lsquic_engine_t *
lsquic_conn_get_engine (lsquic_conn_t *);

int lsquic_conn_get_sockaddr (lsquic_conn_t *,
 const struct sockaddr **local, const struct sockaddr **peer);

The CID returned by lsquic_conn_id() is that used for logging: server and client should return the same CID. As noted earlier, you should not rely on this value to identify a connection!
You can get a pointer to the connection from a stream and a pointer to the engine from a connection.
Calling lsquic_conn_get_sockaddr() will point local and peer to the socket addressess of the current path. QUIC supports multiple paths during migration, but access to those paths has not been exposed via an API yet. This may change when or if QUIC adds true multipath support.

API Reference

Preliminaries

All declarations are in lsquic.h, so it is enough to

#incluide <lsquic.h>

in each source file.

Library Version

LSQUIC follows the following versioning model. The version number
has the form MAJOR.MINOR.PATCH, where

	MAJOR changes when a large redesign occurs;

	MINOR changes when an API change or another significant change occurs; and

	PATCH changes when a bug is fixed or another small, API-compatible change occurs.

QUIC Versions

LSQUIC supports two types of QUIC protocol: Google QUIC and IETF QUIC. The
former will at some point become obsolete, while the latter is still being
developed by the IETF. Both types are included in a single enum:

	
enum lsquic_version

	
	
LSQVER_043

	Google QUIC version Q043

	
LSQVER_046

	Google QUIC version Q046

	
LSQVER_050

	Google QUIC version Q050

	
LSQVER_ID27

	IETF QUIC version ID (Internet-Draft) 27

	
LSQVER_ID28

	IETF QUIC version ID 28

	
LSQVER_ID29

	IETF QUIC version ID 29

	
LSQVER_ID30

	IETF QUIC version ID 30

	
N_LSQVER

	Special value indicating the number of versions in the enum. It
may be used as argument to lsquic_engine_connect().

Several version lists (as bitmasks) are defined in lsquic.h:

	
LSQUIC_SUPPORTED_VERSIONS

	

List of all supported versions.

	
LSQUIC_FORCED_TCID0_VERSIONS

	

List of versions in which the server never includes CID in short packets.

	
LSQUIC_EXPERIMENTAL_VERSIONS

	

Experimental versions.

	
LSQUIC_DEPRECATED_VERSIONS

	

Deprecated versions.

	
LSQUIC_GQUIC_HEADER_VERSIONS

	

Versions that have Google QUIC-like headers. Only Q043 remains in this
list.

	
LSQUIC_IETF_VERSIONS

	

IETF QUIC versions.

	
LSQUIC_IETF_DRAFT_VERSIONS

	

IETF QUIC draft versions. When IETF QUIC v1 is released, it will not
be included in this list.

LSQUIC Types

LSQUIC declares several types used by many of its public functions. They are:

	
lsquic_engine_t

	Instance of LSQUIC engine.

	
lsquic_conn_t

	QUIC connection.

	
lsquic_stream_t

	QUIC stream.

	
lsquic_stream_id_t

	Stream ID.

	
lsquic_conn_ctx_t

	Connection context. This is the return value of lsquic_stream_if.on_new_conn.
To LSQUIC, this is just an opaque pointer. User code is expected to
use it for its own purposes.

	
lsquic_stream_ctx_t

	Stream context. This is the return value of on_new_stream().
To LSQUIC, this is just an opaque pointer. User code is expected to
use it for its own purposes.

	
lsquic_http_headers_t

	HTTP headers

Library Initialization

Before using the library, internal structures must be initialized using
the global initialization function:

if (0 == lsquic_global_init(LSQUIC_GLOBAL_CLIENT|LSQUIC_GLOBAL_SERVER))
 /* OK, do something useful */
 ;

This call only needs to be made once. Afterwards, any number of LSQUIC
engines may be instantiated.

After a process is done using LSQUIC, it should clean up:

lsquic_global_cleanup();

Logging

	
struct lsquic_logger_if

	
	
int (*log_buf)(void *logger_ctx, const char *buf, size_t len)

	

	
void lsquic_logger_init(const struct lsquic_logger_if *logger_if, void *logger_ctx, enum lsquic_logger_timestamp_style)

	Call this if you want to do something with LSQUIC log messages, as they are thrown out by default.

	
int lsquic_set_log_level(const char *log_level)

	Set log level for all LSQUIC modules.

	Parameters

	
	log_level – Acceptable values are debug, info, notice, warning, error, alert, emerg, crit (case-insensitive).

	Returns

	0 on success or -1 on failure (invalid log level).

	
int lsquic_logger_lopt(const char *log_specs)

	Set log level for a particular module or several modules.

	Parameters

	
	log_specs – One or more “module=level” specifications serapated by comma.
For example, “event=debug,engine=info”. See List of Log Modules

Engine Instantiation and Destruction

To use the library, an instance of the struct lsquic_engine needs to be
created:

	
lsquic_engine_t *lsquic_engine_new(unsigned flags, const struct lsquic_engine_api *api)

	Create a new engine.

	Parameters

	
	flags – This is is a bitmask of LSENG_SERVER and
LSENG_HTTP.

	api – Pointer to an initialized lsquic_engine_api.

The engine can be instantiated either in server mode (when LSENG_SERVER
is set) or client mode. If you need both server and client in your program,
create two engines (or as many as you’d like).

Specifying LSENG_HTTP flag enables the HTTP functionality: HTTP/2-like
for Google QUIC connections and HTTP/3 functionality for IETF QUIC
connections.

	
LSENG_SERVER

	One of possible bitmask values passed as first argument to
lsquic_engine_new. When set, the engine instance
will be in the server mode.

	
LSENG_HTTP

	One of possible bitmask values passed as first argument to
lsquic_engine_new. When set, the engine instance
will enable HTTP functionality.

	
void lsquic_engine_cooldown(lsquic_engine_t *engine)

	This function closes all mini connections and marks all full connections
as going away. In server mode, this also causes the engine to stop
creating new connections.

	
void lsquic_engine_destroy(lsquic_engine_t *engine)

	Destroy engine and all its resources.

Engine Callbacks

struct lsquic_engine_api contains a few mandatory members and several
optional members.

	
struct lsquic_engine_api

	
	
const struct lsquic_stream_if *ea_stream_if

	

	
void *ea_stream_if_ctx

	ea_stream_if is mandatory. This structure contains pointers
to callbacks that handle connections and stream events.

	
lsquic_packets_out_f ea_packets_out

	

	
void *ea_packets_out_ctx

	ea_packets_out is used by the engine to send packets.

	
const struct lsquic_engine_settings *ea_settings

	If ea_settings is set to NULL, the engine uses default settings
(see lsquic_engine_init_settings())

	
lsquic_lookup_cert_f ea_lookup_cert

	

	
void *ea_cert_lu_ctx

	Look up certificate. Mandatory in server mode.

	
struct ssl_ctx_st * (*ea_get_ssl_ctx)(void *peer_ctx)

	Get SSL_CTX associated with a peer context. Mandatory in server
mode. This is use for default values for SSL instantiation.

	
const struct lsquic_hset_if *ea_hsi_if

	

	
void *ea_hsi_ctx

	Optional header set interface. If not specified, the incoming headers
are converted to HTTP/1.x format and are read from stream and have to
be parsed again.

	
const struct lsquic_shared_hash_if *ea_shi

	

	
void *ea_shi_ctx

	Shared hash interface can be used to share state between several
processes of a single QUIC server.

	
const struct lsquic_packout_mem_if *ea_pmi

	

	
void *ea_pmi_ctx

	Optional set of functions to manage memory allocation for outgoing
packets.

	
lsquic_cids_update_f ea_new_scids

	

	
lsquic_cids_update_f ea_live_scids

	

	
lsquic_cids_update_f ea_old_scids

	

	
void *ea_cids_update_ctx

	In a multi-process setup, it may be useful to observe the CID
lifecycle. This optional set of callbacks makes it possible.

	
const char *ea_alpn

	The optional ALPN string is used by the client if LSENG_HTTP
is not set.

Engine Settings

Engine behavior can be controlled by several settings specified in the
settings structure:

	
struct lsquic_engine_settings

	
	
unsigned es_versions

	This is a bit mask wherein each bit corresponds to a value in
lsquic_version. Client starts negotiating with the highest
version and goes down. Server supports either of the versions
specified here. This setting applies to both Google and IETF QUIC.

The default value is LSQUIC_DF_VERSIONS.

	
unsigned es_cfcw

	Initial default connection flow control window.

In server mode, per-connection values may be set lower than
this if resources are scarce.

Do not set es_cfcw and es_sfcw lower than LSQUIC_MIN_FCW.

	
unsigned es_sfcw

	Initial default stream flow control window.

In server mode, per-connection values may be set lower than
this if resources are scarce.

Do not set es_cfcw and es_sfcw lower than LSQUIC_MIN_FCW.

	
unsigned es_max_cfcw

	This value is used to specify maximum allowed value CFCW is allowed
to reach due to window auto-tuning. By default, this value is zero,
which means that CFCW is not allowed to increase from its initial
value.

This setting is applicable to both gQUIC and IETF QUIC.

See lsquic_engine_settings.es_cfcw,
lsquic_engine_settings.es_init_max_data.

	
unsigned es_max_sfcw

	This value is used to specify the maximum value stream flow control
window is allowed to reach due to auto-tuning. By default, this
value is zero, meaning that auto-tuning is turned off.

This setting is applicable to both gQUIC and IETF QUIC.

See lsquic_engine_settings.es_sfcw,
lsquic_engine_settings.es_init_max_stream_data_bidi_local,
lsquic_engine_settings.es_init_max_stream_data_bidi_remote.

	
unsigned es_max_streams_in

	Maximum incoming streams, a.k.a. MIDS.

Google QUIC only.

	
unsigned long es_handshake_to

	Handshake timeout in microseconds.

For client, this can be set to an arbitrary value (zero turns the
timeout off).

For server, this value is limited to about 16 seconds. Do not set
it to zero.

Defaults to LSQUIC_DF_HANDSHAKE_TO.

	
unsigned long es_idle_conn_to

	Idle connection timeout, a.k.a ICSL, in microseconds; GQUIC only.

Defaults to LSQUIC_DF_IDLE_CONN_TO

	
int es_silent_close

	When true, CONNECTION_CLOSE is not sent when connection times out.
The server will also not send a reply to client’s CONNECTION_CLOSE.

Corresponds to SCLS (silent close) gQUIC option.

	
unsigned es_max_header_list_size

	This corresponds to SETTINGS_MAX_HEADER_LIST_SIZE
(RFC 7540#section-6.5.2 [https://tools.ietf.org/html/rfc7540.html#section-6.5.2]). 0 means no limit. Defaults
to LSQUIC_DF_MAX_HEADER_LIST_SIZE().

	
const char *es_ua

	
UAID – User-Agent ID. Defaults to LSQUIC_DF_UA.

Google QUIC only.

More parameters for server

	
unsigned es_max_inchoate

	Maximum number of incoming connections in inchoate state. (In
other words, maximum number of mini connections.)

This is only applicable in server mode.

Defaults to LSQUIC_DF_MAX_INCHOATE.

	
int es_support_push

	Setting this value to 0 means that

For client:

	we send a SETTINGS frame to indicate that we do not support server
push; and

	all incoming pushed streams get reset immediately.

(For maximum effect, set es_max_streams_in to 0.)

For server:

	lsquic_conn_push_stream() will return -1.

	
int es_support_tcid0

	If set to true value, the server will not include connection ID in
outgoing packets if client’s CHLO specifies TCID=0.

For client, this means including TCID=0 into CHLO message. Note that
in this case, the engine tracks connections by the
(source-addr, dest-addr) tuple, thereby making it necessary to create
a socket for each connection.

This option has no effect in Q046 and Q050, as the server never includes
CIDs in the short packets.

This setting is applicable to gQUIC only.

The default is LSQUIC_DF_SUPPORT_TCID0().

	
int es_support_nstp

	Q037 and higher support “No STOP_WAITING frame” mode. When set, the
client will send NSTP option in its Client Hello message and will not
sent STOP_WAITING frames, while ignoring incoming STOP_WAITING frames,
if any. Note that if the version negotiation happens to downgrade the
client below Q037, this mode will not be used.

This option does not affect the server, as it must support NSTP mode
if it was specified by the client.

Defaults to LSQUIC_DF_SUPPORT_NSTP.

	
int es_honor_prst

	If set to true value, the library will drop connections when it
receives corresponding Public Reset packet. The default is to
ignore these packets.

The default is LSQUIC_DF_HONOR_PRST.

	
int es_send_prst

	If set to true value, the library will send Public Reset packets
in response to incoming packets with unknown Connection IDs.

The default is LSQUIC_DF_SEND_PRST.

	
unsigned es_progress_check

	A non-zero value enables internal checks that identify suspected
infinite loops in user on_read() and on_write() callbacks
and break them. An infinite loop may occur if user code keeps
on performing the same operation without checking status, e.g.
reading from a closed stream etc.

The value of this parameter is as follows: should a callback return
this number of times in a row without making progress (that is,
reading, writing, or changing stream state), loop break will occur.

The defaut value is LSQUIC_DF_PROGRESS_CHECK.

	
int es_rw_once

	A non-zero value make stream dispatch its read-write events once
per call.

When zero, read and write events are dispatched until the stream
is no longer readable or writeable, respectively, or until the
user signals unwillingness to read or write using
lsquic_stream_wantread() or lsquic_stream_wantwrite()
or shuts down the stream.

The default value is LSQUIC_DF_RW_ONCE.

	
unsigned es_proc_time_thresh

	If set, this value specifies the number of microseconds that
lsquic_engine_process_conns() and
lsquic_engine_send_unsent_packets() are allowed to spend
before returning.

This is not an exact science and the connections must make
progress, so the deadline is checked after all connections get
a chance to tick (in the case of lsquic_engine_process_conns())()
and at least one batch of packets is sent out.

When processing function runs out of its time slice, immediate
calls to lsquic_engine_has_unsent_packets() return false.

The default value is LSQUIC_DF_PROC_TIME_THRESH().

	
int es_pace_packets

	If set to true, packet pacing is implemented per connection.

The default value is LSQUIC_DF_PACE_PACKETS().

	
unsigned es_clock_granularity

	Clock granularity information is used by the pacer. The value
is in microseconds; default is LSQUIC_DF_CLOCK_GRANULARITY().

	
unsigned es_init_max_data

	Initial max data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_DATA_CLIENT or
LSQUIC_DF_INIT_MAX_DATA_SERVER.

IETF QUIC only.

	
unsigned es_init_max_stream_data_bidi_remote

	Initial max stream data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER.

IETF QUIC only.

	
unsigned es_init_max_stream_data_bidi_local

	Initial max stream data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER.

IETF QUIC only.

	
unsigned es_init_max_stream_data_uni

	Initial max stream data for unidirectional streams initiated
by remote endpoint.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER.

IETF QUIC only.

	
unsigned es_init_max_streams_bidi

	Maximum initial number of bidirectional stream.

This is a transport parameter.

Default value is LSQUIC_DF_INIT_MAX_STREAMS_BIDI.

IETF QUIC only.

	
unsigned es_init_max_streams_uni

	Maximum initial number of unidirectional stream.

This is a transport parameter.

Default value is LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER.

IETF QUIC only.

	
unsigned es_idle_timeout

	Idle connection timeout.

This is a transport parameter.

(Note: es_idle_conn_to() is not reused because it is in microseconds,
which, I now realize, was not a good choice. Since it will be
obsoleted some time after the switchover to IETF QUIC, we do not
have to keep on using strange units.)

Default value is LSQUIC_DF_IDLE_TIMEOUT.

Maximum value is 600 seconds.

IETF QUIC only.

	
unsigned es_ping_period

	Ping period. If set to non-zero value, the connection will generate and
send PING frames in the absence of other activity.

By default, the server does not send PINGs and the period is set to zero.
The client’s defaut value is LSQUIC_DF_PING_PERIOD.

IETF QUIC only.

	
unsigned es_scid_len

	Source Connection ID length. Valid values are 0 through 20, inclusive.

Default value is LSQUIC_DF_SCID_LEN.

IETF QUIC only.

	
unsigned es_scid_iss_rate

	Source Connection ID issuance rate. This field is measured in CIDs
per minute. Using value 0 indicates that there is no rate limit for
CID issuance.

Default value is LSQUIC_DF_SCID_ISS_RATE.

IETF QUIC only.

	
unsigned es_qpack_dec_max_size

	Maximum size of the QPACK dynamic table that the QPACK decoder will
use.

The default is LSQUIC_DF_QPACK_DEC_MAX_SIZE.

IETF QUIC only.

	
unsigned es_qpack_dec_max_blocked

	Maximum number of blocked streams that the QPACK decoder is willing
to tolerate.

The default is LSQUIC_DF_QPACK_DEC_MAX_BLOCKED.

IETF QUIC only.

	
unsigned es_qpack_enc_max_size

	Maximum size of the dynamic table that the encoder is willing to use.
The actual size of the dynamic table will not exceed the minimum of
this value and the value advertized by peer.

The default is LSQUIC_DF_QPACK_ENC_MAX_SIZE.

IETF QUIC only.

	
unsigned es_qpack_enc_max_blocked

	Maximum number of blocked streams that the QPACK encoder is willing
to risk. The actual number of blocked streams will not exceed the
minimum of this value and the value advertized by peer.

The default is LSQUIC_DF_QPACK_ENC_MAX_BLOCKED.

IETF QUIC only.

	
int es_ecn

	Enable ECN support.

The default is LSQUIC_DF_ECN

IETF QUIC only.

	
int es_allow_migration

	Allow peer to migrate connection.

The default is LSQUIC_DF_ALLOW_MIGRATION

IETF QUIC only.

	
unsigned es_cc_algo

	Congestion control algorithm to use.

	0: Use default (LSQUIC_DF_CC_ALGO)

	1: Cubic

	2: BBRv1

	3: Adaptive congestion control.

Adaptive congestion control adapts to the environment. It figures
out whether to use Cubic or BBRv1 based on the RTT.

	
unsigned es_cc_rtt_thresh

	Congestion controller RTT threshold in microseconds.

Adaptive congestion control uses BBRv1 until RTT is determined. At
that point a permanent choice of congestion controller is made. If
RTT is smaller than or equal to
lsquic_engine_settings.es_cc_rtt_thresh, congestion
controller is switched to Cubic; otherwise, BBRv1 is picked.

The default value is LSQUIC_DF_CC_RTT_THRESH

	
int es_ql_bits

	Use QL loss bits. Allowed values are:

	0: Do not use loss bits

	1: Allow loss bits

	2: Allow and send loss bits

Default value is LSQUIC_DF_QL_BITS

	
int es_spin

	Enable spin bit. Allowed values are 0 and 1.

Default value is LSQUIC_DF_SPIN

	
int es_delayed_acks

	Enable delayed ACKs extension. Allowed values are 0 and 1.

Warning: this is an experimental feature. Using it will most likely
lead to degraded performance.

Default value is LSQUIC_DF_DELAYED_ACKS

	
int es_timestamps

	Enable timestamps extension. Allowed values are 0 and 1.

Default value is @ref LSQUIC_DF_TIMESTAMPS

	
unsigned short es_max_udp_payload_size_rx

	Maximum packet size we are willing to receive. This is sent to
peer in transport parameters: the library does not enforce this
limit for incoming packets.

If set to zero, limit is not set.

Default value is LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX

	
int es_dplpmtud

	If set to true value, enable DPLPMTUD – Datagram Packetization
Layer Path MTU Discovery.

Default value is LSQUIC_DF_DPLPMTUD

	
unsigned short es_base_plpmtu

	PLPMTU size expected to work for most paths.

If set to zero, this value is calculated based on QUIC and IP versions.

Default value is LSQUIC_DF_BASE_PLPMTU

	
unsigned short es_max_plpmtu

	Largest PLPMTU size the engine will try.

If set to zero, picking this value is left to the engine.

Default value is LSQUIC_DF_MAX_PLPMTU

	
unsigned es_mtu_probe_timer

	This value specifies how long the DPLPMTUD probe timer is, in
milliseconds. [draft-ietf-tsvwg-datagram-plpmtud-22] [https://tools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-22] says:

PROBE_TIMER: The PROBE_TIMER is configured to expire after a period
longer than the maximum time to receive an acknowledgment to a
probe packet. This value MUST NOT be smaller than 1 second, and
SHOULD be larger than 15 seconds. Guidance on selection of the
timer value are provided in section 3.1.1 of the UDP Usage
Guidelines RFC 8085#section-3.1 [https://tools.ietf.org/html/rfc8085.html#section-3.1].

If set to zero, the default is used.

Default value is LSQUIC_DF_MTU_PROBE_TIMER

	
unsigned es_noprogress_timeout

	No progress timeout.

If connection does not make progress for this number of seconds, the
connection is dropped. Here, progress is defined as user streams
being written to or read from.

If this value is zero, this timeout is disabled.

Default value is LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER in server
mode and LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT in client mode.

	
int es_grease_quic_bit

	Enable the “QUIC bit grease” extension. When set to a true value,
lsquic will grease the QUIC bit on the outgoing QUIC packets if
the peer sent the “grease_quic_bit” transport parameter.

Default value is LSQUIC_DF_GREASE_QUIC_BIT

	
int es_datagrams

	Enable datagrams extension. Allowed values are 0 and 1.

Default value is LSQUIC_DF_DATAGRAMS

	
int es_optimistic_nat

	If set to true, changes in peer port are assumed to be due to a
benign NAT rebinding and path characteristics – MTU, RTT, and
CC state – are not reset.

Default value is LSQUIC_DF_OPTIMISTIC_NAT

To initialize the settings structure to library defaults, use the following
convenience function:

	
lsquic_engine_init_settings(struct lsquic_engine_settings *, unsigned flags)

	flags is a bitmask of LSENG_SERVER and LSENG_HTTP

After doing this, change just the settings you’d like. To check whether
the values are correct, another convenience function is provided:

	
lsquic_engine_check_settings(const struct lsquic_engine_settings *, unsigned flags, char *err_buf, size_t err_buf_sz)

	Check settings for errors. Return 0 if settings are OK, -1 otherwise.

If err_buf() and err_buf_sz() are set, an error string is written to the
buffers.

The following macros in lsquic.h specify default values:

Note that, despite our best efforts, documentation may accidentally get
out of date. Please check your :file:`lsquic.h` for actual values.

	
LSQUIC_MIN_FCW

	Minimum flow control window is set to 16 KB for both client and server.
This means we can send up to this amount of data before handshake gets
completed.

	
LSQUIC_DF_VERSIONS

	By default, deprecated and experimental versions are not included.

	
LSQUIC_DF_CFCW_SERVER

	

	
LSQUIC_DF_CFCW_CLIENT

	

	
LSQUIC_DF_SFCW_SERVER

	

	
LSQUIC_DF_SFCW_CLIENT

	

	
LSQUIC_DF_MAX_STREAMS_IN

	

	
LSQUIC_DF_INIT_MAX_DATA_SERVER

	

	
LSQUIC_DF_INIT_MAX_DATA_CLIENT

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT

	

	
LSQUIC_DF_INIT_MAX_STREAMS_BIDI

	

	
LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT

	

	
LSQUIC_DF_INIT_MAX_STREAMS_UNI_SERVER

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT

	

	
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER

	

	
LSQUIC_DF_IDLE_TIMEOUT

	Default idle connection timeout is 30 seconds.

	
LSQUIC_DF_PING_PERIOD

	Default ping period is 15 seconds.

	
LSQUIC_DF_HANDSHAKE_TO

	Default handshake timeout is 10,000,000 microseconds (10 seconds).

	
LSQUIC_DF_IDLE_CONN_TO

	Default idle connection timeout is 30,000,000 microseconds.

	
LSQUIC_DF_SILENT_CLOSE

	By default, connections are closed silenty when they time out (no
CONNECTION_CLOSE frame is sent) and the server does not reply with
own CONNECTION_CLOSE after it receives one.

	
LSQUIC_DF_MAX_HEADER_LIST_SIZE

	Default value of maximum header list size. If set to non-zero value,
SETTINGS_MAX_HEADER_LIST_SIZE will be sent to peer after handshake is
completed (assuming the peer supports this setting frame type).

	
LSQUIC_DF_UA

	Default value of UAID (user-agent ID).

	
LSQUIC_DF_MAX_INCHOATE

	Default is 1,000,000.

	
LSQUIC_DF_SUPPORT_NSTP

	NSTP is not used by default.

	
LSQUIC_DF_SUPPORT_PUSH

	Push promises are supported by default.

	
LSQUIC_DF_SUPPORT_TCID0

	Support for TCID=0 is enabled by default.

	
LSQUIC_DF_HONOR_PRST

	By default, LSQUIC ignores Public Reset packets.

	
LSQUIC_DF_SEND_PRST

	By default, LSQUIC will not send Public Reset packets in response to
packets that specify unknown connections.

	
LSQUIC_DF_PROGRESS_CHECK

	By default, infinite loop checks are turned on.

	
LSQUIC_DF_RW_ONCE

	By default, read/write events are dispatched in a loop.

	
LSQUIC_DF_PROC_TIME_THRESH

	By default, the threshold is not enabled.

	
LSQUIC_DF_PACE_PACKETS

	By default, packets are paced

	
LSQUIC_DF_CLOCK_GRANULARITY

	Default clock granularity is 1000 microseconds.

	
LSQUIC_DF_SCID_LEN

	The default value is 8 for simplicity and speed.

	
LSQUIC_DF_SCID_ISS_RATE

	The default value is 60 CIDs per minute.

	
LSQUIC_DF_QPACK_DEC_MAX_BLOCKED

	Default value is 100.

	
LSQUIC_DF_QPACK_DEC_MAX_SIZE

	Default value is 4,096 bytes.

	
LSQUIC_DF_QPACK_ENC_MAX_BLOCKED

	Default value is 100.

	
LSQUIC_DF_QPACK_ENC_MAX_SIZE

	Default value is 4,096 bytes.

	
LSQUIC_DF_ECN

	ECN is disabled by default.

	
LSQUIC_DF_ALLOW_MIGRATION

	Allow migration by default.

	
LSQUIC_DF_QL_BITS

	Use QL loss bits by default.

	
LSQUIC_DF_SPIN

	Turn spin bit on by default.

	
LSQUIC_DF_CC_ALGO

	Use Adaptive Congestion Controller by default.

	
LSQUIC_DF_CC_RTT_THRESH

	Default value of the CC RTT threshold is 1500 microseconds

	
LSQUIC_DF_DELAYED_ACKS

	Delayed ACKs are off by default.

	
LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX

	By default, incoming packet size is not limited.

	
LSQUIC_DF_DPLPMTUD

	By default, DPLPMTUD is enabled

	
LSQUIC_DF_BASE_PLPMTU

	By default, this value is left up to the engine.

	
LSQUIC_DF_MAX_PLPMTU

	By default, this value is left up to the engine.

	
LSQUIC_DF_MTU_PROBE_TIMER

	By default, we use the minimum timer of 1000 milliseconds.

	
LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER

	By default, drop no-progress connections after 60 seconds on the server.

	
LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT

	By default, do not use no-progress timeout on the client.

	
LSQUIC_DF_GREASE_QUIC_BIT

	By default, greasing the QUIC bit is enabled (if peer sent
the “grease_quic_bit” transport parameter).

	
LSQUIC_DF_TIMESTAMPS

	Timestamps are on by default.

	
LSQUIC_DF_DATAGRAMS

	Datagrams are off by default.

	
LSQUIC_DF_OPTIMISTIC_NAT

	Assume optimistic NAT by default.

Receiving Packets

Incoming packets are supplied to the engine using lsquic_engine_packet_in().
It is up to the engine to decide what do to with the packet. It can find an existing
connection and dispatch the packet there, create a new connection (in server mode), or
schedule a version negotiation or stateless reset packet.

	
int lsquic_engine_packet_in(lsquic_engine_t *engine, const unsigned char *data, size_t size, const struct sockaddr *local, const struct sockaddr *peer, void *peer_ctx, int ecn)

	Pass incoming packet to the QUIC engine. This function can be called
more than once in a row. After you add one or more packets, call
lsquic_engine_process_conns() to schedule outgoing packets, if any.

	Parameters

	
	engine – Engine instance.

	data – Pointer to UDP datagram payload.

	size – Size of UDP datagram.

	local – Local address.

	peer – Peer address.

	peer_ctx – Peer context.

	ecn – ECN marking associated with this UDP datagram.

	Returns

	
	0: Packet was processed by a real connection.

	1: Packet was handled successfully, but not by a connection.
This may happen with version negotiation and public reset
packets as well as some packets that may be ignored.

	-1: Some error occurred. Possible reasons are invalid packet
size or failure to allocate memory.

	
int lsquic_engine_earliest_adv_tick(lsquic_engine_t *engine, int *diff)

	Returns true if there are connections to be processed, false otherwise.

	Parameters

	
	engine – Engine instance.

	diff – If the function returns a true value, the pointed to integer is set to the
difference between the earliest advisory tick time and now.
If the former is in the past, this difference is negative.

	Returns

	True if there are connections to be processed, false otherwise.

Sending Packets

User specifies a callback lsquic_packets_out_f in lsquic_engine_api
that the library uses to send packets.

	
struct lsquic_out_spec

	This structure describes an outgoing packet.

	
struct iovec *iov

	A vector with payload.

	
size_t iovlen

	Vector length.

	
const struct sockaddr *local_sa

	Local address.

	
const struct sockaddr *dest_sa

	Destination address.

	
void *peer_ctx

	Peer context associated with the local address.

	
int ecn

	ECN: Valid values are 0 - 3. See RFC 3168 [https://tools.ietf.org/html/rfc3168.html].

ECN may be set by IETF QUIC connections if es_ecn is set.

	
typedef int (*lsquic_packets_out_f)(void *packets_out_ctx, const struct lsquic_out_spec *out_spec, unsigned n_packets_out)

	Returns number of packets successfully sent out or -1 on error. -1 should
only be returned if no packets were sent out. If -1 is returned or if the
return value is smaller than n_packets_out, this indicates that sending
of packets is not possible.

If not all packets could be sent out, then:

	errno is examined. If it is not EAGAIN or EWOULDBLOCK, the connection
whose packet caused the error is closed forthwith.

	No packets are attempted to be sent out until lsquic_engine_send_unsent_packets()
is called.

	
void lsquic_engine_process_conns(lsquic_engine_t *engine)

	Process tickable connections. This function must be called often enough so
that packets and connections do not expire. The preferred method of doing
so is by using lsquic_engine_earliest_adv_tick().

	
int lsquic_engine_has_unsent_packets(lsquic_engine_t *engine)

	Returns true if engine has some unsent packets. This happens if
lsquic_engine_api.ea_packets_out could not send everything out
or if processing deadline was exceeded (see
lsquic_engine_settings.es_proc_time_thresh).

	
void lsquic_engine_send_unsent_packets(lsquic_engine_t *engine)

	Send out as many unsent packets as possibe: until we are out of unsent
packets or until ea_packets_out() fails.

If ea_packets_out() cannot send all packets, this function must be
called to signify that sending of packets is possible again.

Stream Callback Interface

The stream callback interface structure lists the callbacks used by
the engine to communicate with the user code:

	
struct lsquic_stream_if

	
	
lsquic_conn_ctx_t *(*on_new_conn)(void *stream_if_ctx, lsquic_conn_t *)

	Called when a new connection has been created. In server mode,
this means that the handshake has been successful. In client mode,
on the other hand, this callback is called as soon as connection
object is created inside the engine, but before the handshake is
done.

The return value is the connection context associated with this
connection. Use lsquic_conn_get_ctx() to get back this
context. It is OK for this function to return NULL.

This callback is mandatory.

	
void (*on_conn_closed)(lsquic_conn_t *)

	Connection is closed.

This callback is mandatory.

	
lsquic_stream_ctx_t * (*on_new_stream)(void *stream_if_ctx, lsquic_stream_t *)

	If you need to initiate a connection, call lsquic_conn_make_stream().
This will cause on_new_stream() callback to be called when appropriate
(this operation is delayed when maximum number of outgoing streams is
reached).

If connection is going away, this callback may be called with the
second parameter set to NULL.

The return value is the stream context associated with the stream.
A pointer to it is passed to on_read(), on_write(), and on_close()
callbacks. It is OK for this function to return NULL.

This callback is mandatory.

	
void (*on_read)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	Stream is readable: either there are bytes to be read or an error
is ready to be collected.

This callback is mandatory.

	
void (*on_write)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	Stream is writeable.

This callback is mandatory.

	
void (*on_close)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	After this callback returns, the stream is no longer accessible. This is
a good time to clean up the stream context.

This callback is mandatory.

	
void (*on_hsk_done)(lsquic_conn_t *c, enum lsquic_hsk_status s)

	When handshake is completed, this callback is called.

This callback is optional.

	
void (*on_goaway_received)(lsquic_conn_t *)

	This is called when our side received GOAWAY frame. After this,
new streams should not be created.

This callback is optional.

	
void (*on_new_token)(lsquic_conn_t *c, const unsigned char *token, size_t token_size)

	When client receives a token in NEW_TOKEN frame, this callback is called.

This callback is optional.

	
void (*on_sess_resume_info)(lsquic_conn_t *c, const unsigned char *, size_t)

	This callback lets client record information needed to
perform session resumption next time around.

This callback is optional.

	
ssize_t (*on_dg_write)(lsquic_conn_t *c, void *buf, size_t buf_sz)

	Called when datagram is ready to be written. Write at most
buf_sz bytes to buf and return number of bytes
written.

	
void (*on_datagram)(lsquic_conn_t *c, const void *buf, size_t sz)

	Called when datagram is read from a packet. This callback is
required when lsquic_engine_settings.es_datagrams is true.
Take care to process it quickly, as this is called during
lsquic_engine_packet_in().

Creating Connections

In server mode, the connections are created by the library based on incoming
packets. After handshake is completed, the library calls lsquic_stream_if.on_new_conn
callback.

In client mode, a new connection is created by

	
lsquic_conn_t * lsquic_engine_connect(lsquic_engine_t *engine, enum lsquic_version version, const struct sockaddr *local_sa, const struct sockaddr *peer_sa, void *peer_ctx, lsquic_conn_ctx_t *conn_ctx, const char *sni, unsigned short base_plpmtu, const unsigned char *sess_resume, size_t sess_resume_len, const unsigned char *token, size_t token_sz)

	
	Parameters

	
	engine – Engine to use.

	version – To let the engine specify QUIC version, use N_LSQVER. If session resumption
information is supplied, version is picked from there instead.

	local_sa – Local address.

	peer_sa – Address of the server.

	peer_ctx – Context associated with the peer. This is what gets passed to TODO.

	conn_ctx – Connection context can be set early using this parameter. Useful if
you need the connection context to be available in on_conn_new().
Note that that callback’s return value replaces the connection
context set here.

	sni – The SNI is required for Google QUIC connections; it is optional for
IETF QUIC and may be set to NULL.

	base_plpmtu – Base PLPMTU. If set to zero, it is selected based on the
engine settings (see
lsquic_engine_settings.es_base_plpmtu),
QUIC version, and IP version.

	sess_resume – Pointer to previously saved session resumption data needed for
TLS resumption. May be NULL.

	sess_resume_len – Size of session resumption data.

	token – Pointer to previously received token to include in the Initial
packet. Tokens are used by IETF QUIC to pre-validate client
connections, potentially avoiding a retry.

See lsquic_stream_if.on_new_token callback.

May be NULL.

	token_sz – Size of data pointed to by token.

Closing Connections

	
void lsquic_conn_going_away(lsquic_conn_t *conn)

	Mark connection as going away: send GOAWAY frame and do not accept
any more incoming streams, nor generate streams of our own.

Only applicable to HTTP/3 and GQUIC connections. Otherwise a no-op.

	
void lsquic_conn_close(lsquic_conn_t *conn)

	This closes the connection. lsquic_stream_if.on_conn_closed
and lsquic_stream_if.on_close callbacks will be called.

Creating Streams

Similar to connections, streams are created by the library in server mode; they
correspond to requests. In client mode, a new stream is created by

	
void lsquic_conn_make_stream(lsquic_conn_t *)

	Create a new request stream. This causes on_new_stream() callback
to be called. If creating more requests is not permitted at the moment
(due to number of concurrent streams limit), stream creation is registered
as “pending” and the stream is created later when number of streams dips
under the limit again. Any number of pending streams can be created.
Use lsquic_conn_n_pending_streams() and
lsquic_conn_cancel_pending_streams() to manage pending streams.

If connection is going away, on_new_stream() is called with the
stream parameter set to NULL.

Stream Events

To register or unregister an interest in a read or write event, use the
following functions:

	
int lsquic_stream_wantread(lsquic_stream_t *stream, int want)

	
	Parameters

	
	stream – Stream to read from.

	want – Boolean value indicating whether the caller wants to read
from stream.

	Returns

	Previous value of want or -1 if the stream has already
been closed for reading.

A stream becomes readable if there is was an error: for example, the
peer may have reset the stream. In this case, reading from the stream
will return an error.

	
int lsquic_stream_wantwrite(lsquic_stream_t *stream, int want)

	
	Parameters

	
	stream – Stream to write to.

	want – Boolean value indicating whether the caller wants to write
to stream.

	Returns

	Previous value of want or -1 if the stream has already
been closed for writing.

Reading From Streams

	
ssize_t lsquic_stream_read(lsquic_stream_t *stream, unsigned char *buf, size_t sz)

	
	Parameters

	
	stream – Stream to read from.

	buf – Buffer to copy data to.

	sz – Size of the buffer.

	Returns

	Number of bytes read, zero if EOS has been reached, or -1 on error.

Read up to sz bytes from stream into buffer buf.

-1 is returned on error, in which case errno is set:

	EBADF: The stream is closed.

	ECONNRESET: The stream has been reset.

	EWOULDBLOCK: There is no data to be read.

	
ssize_t lsquic_stream_readv(lsquic_stream_t *stream, const struct iovec *vec, int iovcnt)

	
	Parameters

	
	stream – Stream to read from.

	vec – Array of iovec structures.

	iovcnt – Number of elements in vec.

	Returns

	Number of bytes read, zero if EOS has been reached, or -1 on error.

Similar to lsquic_stream_read(), but reads data into a vector.

	
ssize_t lsquic_stream_readf(lsquic_stream_t *stream, size_t (*readf)(void *ctx, const unsigned char *buf, size_t len, int fin), void *ctx)

	
	Parameters

	
	stream – Stream to read from.

	readf – The callback takes four parameters:

	Pointer to user-supplied context;

	Pointer to the data;

	Data size (can be zero); and

	Indicator whether the FIN follows the data.

The callback returns number of bytes processed. If this number is zero
or is smaller than len, reading from stream stops.

	ctx – Context pointer passed to readf.

This function allows user-supplied callback to read the stream contents.
It is meant to be used for zero-copy stream processing.

Return value and errors are same as in lsquic_stream_read().

Writing To Streams

	
ssize_t lsquic_stream_write(lsquic_stream_t *stream, const void *buf, size_t len)

	
	Parameters

	
	stream – Stream to write to.

	buf – Buffer to copy data from.

	len – Number of bytes to copy.

	Returns

	Number of bytes written – which may be smaller than len – or a negative
value when an error occurs.

Write len bytes to the stream. Returns number of bytes written, which
may be smaller that len.

A negative return value indicates a serious error (the library is likely
to have aborted the connection because of it).

	
ssize_t lsquic_stream_writev(lsquic_stream_t *s, const struct iovec *vec, int count)

	Like lsquic_stream_write(), but read data from a vector.

	
struct lsquic_reader

	Used as argument to lsquic_stream_writef().

	
size_t (*lsqr_read)(void *lsqr_ctx, void *buf, size_t count)

	
	Parameters

	
	lsqr_ctx – Pointer to user-specified context.

	buf – Memory location to write to.

	count – Size of available memory pointed to by buf.

	Returns

	Number of bytes written. This is not a ssize_t because
the read function is not supposed to return an error. If an error
occurs in the read function (for example, when reading from a file
fails), it is supposed to deal with the error itself.

	
size_t (*lsqr_size)(void *lsqr_ctx)

	Return number of bytes remaining in the reader.

	
void *lsqr_ctx

	Context pointer passed both to lsqr_read() and to lsqr_size().

	
ssize_t lsquic_stream_writef(lsquic_stream_t *stream, struct lsquic_reader *reader)

	
	Parameters

	
	stream – Stream to write to.

	reader – Reader to read from.

	Returns

	Number of bytes written or -1 on error.

Write to stream using lsquic_reader. This is the most generic of
the write functions – lsquic_stream_write() and
lsquic_stream_writev() utilize the same mechanism.

	
ssize_t lsquic_stream_pwritev(struct lsquic_stream *stream, ssize_t (*preadv)(void *user_data, const struct iovec *iov, int iovcnt), void *user_data, size_t n_to_write)

	
	Parameters

	
	stream – Stream to write to.

	preadv – Pointer to a custom preadv(2)-like function.

	user_data – Data to pass to preadv function.

	n_to_write – Number of bytes to write.

	Returns

	Number of bytes written or -1 on error.

Write to stream using user-supplied preadv() function.
The stream allocates one or more packets and calls preadv(),
which then fills the array of buffers. This is a good way to
minimize the number of read(2) system calls; the user can call
preadv(2) instead.

The number of bytes available in the iov vector passed back to
the user callback may be smaller than n_to_write. The expected
use pattern is to pass the number of bytes remaining in the file
and keep on calling preadv(2).

Note that, unlike other stream-writing functions above,
lsquic_stream_pwritev() does not buffer bytes inside the
stream; it only writes to packets. That means the caller must be
prepared for this function to return 0 even inside the “on write”
stream callback. In that case, the caller should fall back to using
another write function.

It is OK for the preadv callback to write fewer bytes that
n_to_write. (This can happen if the underlying data source
is truncated.)

/*
 * For example, the return value of zero can be handled as follows:
 */
nw = lsquic_stream_pwritev(stream, my_readv, some_ctx, n_to_write);
if (nw == 0)
 nw = lsquic_stream_write(stream, rem_bytes_buf, rem_bytes_len);

	
int lsquic_stream_flush(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to flush.

	Returns

	0 on success and -1 on failure.

Flush any buffered data. This triggers packetizing even a single byte
into a separate frame. Flushing a closed stream is an error.

Closing Streams

Streams can be closed for reading, writing, or both.
on_close() callback is called at some point after a stream is closed
for both reading and writing,

	
int lsquic_stream_shutdown(lsquic_stream_t *stream, int how)

	
	Parameters

	
	stream – Stream to shut down.

	how – This parameter specifies what do to. Allowed values are:

	0: Stop reading.

	1: Stop writing.

	2: Stop both reading and writing.

	Returns

	0 on success or -1 on failure.

	
int lsquic_stream_close(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to close.

	Returns

	0 on success or -1 on failure.

Sending HTTP Headers

	
struct lsxpack_header

	

This type is defined in _lsxpack_header.h_. See that header file for
more information.

	
char *buf

	the buffer for headers

	
uint32_t name_hash

	hash value for name

	
uint32_t nameval_hash

	hash value for name + value

	
lsxpack_strlen_t name_offset

	the offset for name in the buffer

	
lsxpack_strlen_t name_len

	the length of name

	
lsxpack_strlen_t val_offset

	the offset for value in the buffer

	
lsxpack_strlen_t val_len

	the length of value

	
uint16_t chain_next_idx

	mainly for cookie value chain

	
uint8_t hpack_index

	HPACK static table index

	
uint8_t qpack_index

	QPACK static table index

	
uint8_t app_index

	APP header index

	
enum lsxpack_flag flags:8

	combination of lsxpack_flag

	
uint8_t indexed_type

	control to disable index or not

	
uint8_t dec_overhead

	num of extra bytes written to decoded buffer

	
lsquic_http_headers_t

	
	
int count

	Number of headers in headers.

	
struct lsxpack_header *headers

	Pointer to an array of HTTP headers.

HTTP header list structure. Contains a list of HTTP headers.

	
int lsquic_stream_send_headers(lsquic_stream_t *stream, const lsquic_http_headers_t *headers, int eos)

	
	Parameters

	
	stream – Stream to send headers on.

	headers – Headers to send.

	eos – Boolean value to indicate whether these headers constitute the whole
HTTP message.

	Returns

	0 on success or -1 on error.

Receiving HTTP Headers

If ea_hsi_if is not set in lsquic_engine_api, the library will translate
HPACK- and QPACK-encoded headers into HTTP/1.x-like headers and prepend them to the
stream. To the stream-reading function, it will look as if a standard HTTP/1.x
message.

Alternatively, you can specify header-processing set of functions and manage header
fields yourself. In that case, the header set must be “read” from the stream via
lsquic_stream_get_hset().

	
struct lsquic_hset_if

	
	
void * (*hsi_create_header_set)(void *hsi_ctx, lsquic_stream_t *stream, int is_push_promise)

	
	Parameters

	
	hsi_ctx – User context. This is the pointer specifed in ea_hsi_ctx.

	stream – Stream with which the header set is associated. May be set
to NULL in server mode.

	is_push_promise – Boolean value indicating whether this header set is
for a push promise.

	Returns

	Pointer to user-defined header set object.

Create a new header set. This object is (and must be) fetched from a
stream by calling lsquic_stream_get_hset() before the stream can
be read.

	
struct lsxpack_header * (*hsi_prepare_decode)(void *hdr_set, struct lsxpack_header *hdr, size_t space)

	Return a header set prepared for decoding. If hdr is NULL, this
means return a new structure with at least space bytes available
in the decoder buffer. On success, a newly prepared header is
returned.

If hdr is not NULL, it means there was not enough decoder buffer
and it must be increased to at least space bytes. buf, val_len,
and name_offset member of the hdr structure may change. On
success, the return value is the same as hdr.

If NULL is returned, the space cannot be allocated.

	
int (*hsi_process_header)(void *hdr_set, struct lsxpack_header *hdr)

	Process new header.

	Parameters

	
	hdr_set – Header set to add the new header field to. This is the object
returned by hsi_create_header_set().

	hdr – The header returned by @ref hsi_prepare_decode().

	Returns

	Return 0 on success, a positive value if a header error occured,
or a negative value on any other error. A positive return value
will result in cancellation of associated stream. A negative return
value will result in connection being aborted.

	
void (*hsi_discard_header_set)(void *hdr_set)

	
	Parameters

	
	hdr_set – Header set to discard.

Discard header set. This is called for unclaimed header sets and
header sets that had an error.

	
enum lsquic_hsi_flag hsi_flags

	These flags specify properties of decoded headers passed to
hsi_process_header(). This is only applicable to QPACK headers;
HPACK library header properties are based on compilation, not
run-time, options.

	
void * lsquic_stream_get_hset(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to fetch header set from.

	Returns

	Header set associated with the stream.

Get header set associated with the stream. The header set is created by
hsi_create_header_set() callback. After this call, the ownership of
the header set is transferred to the caller.

This call must precede calls to lsquic_stream_read(),
lsquic_stream_readv(), and lsquic_stream_readf().

If the optional header set interface is not specified,
this function returns NULL.

Push Promises

	
int lsquic_conn_push_stream(lsquic_conn_t *conn, void *hdr_set, lsquic_stream_t *stream, const lsquic_http_headers_t *headers)

	
	Returns

	
	0: Stream pushed successfully.

	
	1: Stream push failed because it is disabled or because we hit

	stream limit or connection is going away.

	-1: Stream push failed because of an internal error.

A server may push a stream. This call creates a new stream in reference
to stream stream. It will behave as if the client made a request: it will
trigger on_new_stream() event and it can be used as a regular client-initiated stream.

hdr_set must be set. It is passed as-is to lsquic_stream_get_hset().

	
int lsquic_conn_is_push_enabled(lsquic_conn_t *conn)

	
	Returns

	Boolean value indicating whether push promises are enabled.

Only makes sense in server mode: the client cannot push a stream and this
function always returns false in client mode.

	
int lsquic_stream_is_pushed(const lsquic_stream_t *stream)

	
	Returns

	Boolean value indicating whether this is a pushed stream.

	
int lsquic_stream_refuse_push(lsquic_stream_t *stream)

	Refuse pushed stream. Call it from on_new_stream(). No need to
call lsquic_stream_close() after this. on_close() will be called.

	
int lsquic_stream_push_info(const lsquic_stream_t *stream, lsquic_stream_id_t *ref_stream_id, void **hdr_set)

	Get information associated with pushed stream

	Parameters

	
	ref_stream_id – Stream ID in response to which push promise was sent.

	hdr_set – Header set. This object was passed to or generated by lsquic_conn_push_stream().

	Returns

	0 on success and -1 if this is not a pushed stream.

Stream Priorities

	
unsigned lsquic_stream_priority(const lsquic_stream_t *stream)

	Return current priority of the stream.

	
int lsquic_stream_set_priority(lsquic_stream_t *stream, unsigned priority)

	Set stream priority. Valid priority values are 1 through 256, inclusive.
Lower value means higher priority.

	Returns

	0 on success of -1 on failure (this happens if priority value is invalid).

Miscellaneous Engine Functions

	
unsigned lsquic_engine_quic_versions(const lsquic_engine_t *engine)

	Return the list of QUIC versions (as bitmask) this engine instance supports.

	
unsigned lsquic_engine_count_attq(lsquic_engine_t *engine, int from_now)

	Return number of connections whose advisory tick time is before current
time plus from_now microseconds from now. from_now can be negative.

Miscellaneous Connection Functions

	
enum lsquic_version lsquic_conn_quic_version(const lsquic_conn_t *conn)

	Get QUIC version used by the connection.

If version has not yet been negotiated (can happen in client mode), -1 is
returned.

	
const lsquic_cid_t * lsquic_conn_id(const lsquic_conn_t *conn)

	Get connection ID.

	
lsquic_engine_t * lsquic_conn_get_engine(lsquic_conn_t *conn)

	Get pointer to the engine.

	
int lsquic_conn_get_sockaddr(lsquic_conn_t *conn, const struct sockaddr **local, const struct sockaddr **peer)

	Get current (last used) addresses associated with the current path
used by the connection.

	
struct stack_st_X509 * lsquic_conn_get_server_cert_chain(lsquic_conn_t *conn)

	Get certificate chain returned by the server. This can be used for
server certificate verification.

The caller releases the stack using sk_X509_free().

	
lsquic_conn_ctx_t * lsquic_conn_get_ctx(const lsquic_conn_t *conn)

	Get user-supplied context associated with the connection.

	
void lsquic_conn_set_ctx(lsquic_conn_t *conn, lsquic_conn_ctx_t *ctx)

	Set user-supplied context associated with the connection.

	
void * lsquic_conn_get_peer_ctx(lsquic_conn_t *conn, const struct sockaddr *local_sa)

	Get peer context associated with the connection and local address.

	
enum LSQUIC_CONN_STATUS lsquic_conn_status(lsquic_conn_t *conn, char *errbuf, size_t bufsz)

	Get connection status.

Miscellaneous Stream Functions

	
unsigned lsquic_conn_n_avail_streams(const lsquic_conn_t *conn)

	Return max allowed outbound streams less current outbound streams.

	
unsigned lsquic_conn_n_pending_streams(const lsquic_conn_t *conn)

	Return number of delayed streams currently pending.

	
unsigned lsquic_conn_cancel_pending_streams(lsquic_conn_t *, unsigned n)

	Cancel n pending streams. Returns new number of pending streams.

	
lsquic_conn_t * lsquic_stream_conn(const lsquic_stream_t *stream)

	Get a pointer to the connection object. Use it with connection functions.

	
int lsquic_stream_is_rejected(const lsquic_stream_t *stream)

	Returns true if this stream was rejected, false otherwise. Use this as
an aid to distinguish between errors.

Other Functions

	
enum lsquic_version lsquic_str2ver(const char *str, size_t len)

	Translate string QUIC version to LSQUIC QUIC version representation.

	
enum lsquic_version lsquic_alpn2ver(const char *alpn, size_t len)

	Translate ALPN (e.g. “h3”, “h3-23”, “h3-Q046”) to LSQUIC enum.

Miscellaneous Types

	
struct lsquic_shared_hash_if

	The shared hash interface is used to share data between multiple LSQUIC instances.

	
int (*shi_insert)(void *shi_ctx, void *key, unsigned key_sz, void *data, unsigned data_sz, time_t expiry)

	
	Parameters

	
	shi_ctx – Shared memory context pointer

	key – Key data.

	key_sz – Key size.

	data – Pointer to the data to store.

	data_sz – Data size.

	expiry – When this item expires. If you want your item to never expire, set this to zero.

	Returns

	0 on success, -1 on failure.

If inserted successfully, free() will be called on data and key
pointer when the element is deleted, whether due to expiration
or explicit deletion.

	
int (*shi_delete)(void *shi_ctx, const void *key, unsigned key_sz)

	Delete item from shared hash

	Returns

	0 on success, -1 on failure.

	
int (*shi_lookup)(void *shi_ctx, const void *key, unsigned key_sz, void **data, unsigned *data_sz)

	
	Parameters

	
	shi_ctx – Shared memory context pointer

	key – Key data.

	key_sz – Key size.

	data – Pointer to set to the result.

	data_sz – Pointer to the data size.

	Returns

	

	1: found.

	0: not found.

	-1: error (perhaps not enough room in data if copy was attempted).

The implementation may choose to copy the object into buffer pointed
to by data, so you should have it ready.

	
struct lsquic_packout_mem_if

	The packet out memory interface is used by LSQUIC to get buffers to
which outgoing packets will be written before they are passed to
lsquic_engine_api.ea_packets_out callback.

If not specified, malloc() and free() are used.

	
void * (*pmi_allocate)(void *pmi_ctx, void *peer_ctx, unsigned short sz, char is_ipv6)

	Allocate buffer for sending.

	
void (*pmi_release)(void *pmi_ctx, void *peer_ctx, void *buf, char is_ipv6)

	This function is used to release the allocated buffer after it is
sent via ea_packets_out().

	
void (*pmi_return)(void *pmi_ctx, void *peer_ctx, void *buf, char is_ipv6)

	If allocated buffer is not going to be sent, return it to the
caller using this function.

	
typedef void (*lsquic_cids_update_f)(void *ctx, void **peer_ctx, const lsquic_cid_t *cids, unsigned n_cids)

	
	Parameters

	
	ctx – Context associated with the CID lifecycle callbacks (ea_cids_update_ctx).

	peer_ctx – Array of peer context pointers.

	cids – Array of connection IDs.

	n_cids – Number of elements in the peer context pointer and connection ID arrays.

	
struct lsquic_keylog_if

	SSL keylog interface.

	
void * (*kli_open)(void *keylog_ctx, lsquic_conn_t *conn)

	Return keylog handle or NULL if no key logging is desired.

	
void (*kli_log_line)(void *handle, const char *line)

	Log line. The first argument is the pointer returned by kli_open().

	
void (*kli_close)(void *handle)

	Close handle.

	
enum lsquic_logger_timestamp_style

	Enumerate timestamp styles supported by LSQUIC logger mechanism.

	
LLTS_NONE

	No timestamp is generated.

	
LLTS_HHMMSSMS

	The timestamp consists of 24 hours, minutes, seconds, and milliseconds. Example: 13:43:46.671

	
LLTS_YYYYMMDD_HHMMSSMS

	Like above, plus date, e.g: 2017-03-21 13:43:46.671

	
LLTS_CHROMELIKE

	This is Chrome-like timestamp used by proto-quic. The timestamp
includes month, date, hours, minutes, seconds, and microseconds.

Example: 1223/104613.946956 (instead of 12/23 10:46:13.946956).

This is to facilitate reading two logs side-by-side.

	
LLTS_HHMMSSUS

	The timestamp consists of 24 hours, minutes, seconds, and microseconds. Example: 13:43:46.671123

	
LLTS_YYYYMMDD_HHMMSSUS

	Date and time using microsecond resolution, e.g: 2017-03-21 13:43:46.671123

	
enum LSQUIC_CONN_STATUS

	
	
LSCONN_ST_HSK_IN_PROGRESS

	

	
LSCONN_ST_CONNECTED

	

	
LSCONN_ST_HSK_FAILURE

	

	
LSCONN_ST_GOING_AWAY

	

	
LSCONN_ST_TIMED_OUT

	

	
LSCONN_ST_RESET

	If es_honor_prst is not set, the connection will never get public
reset packets and this flag will not be set.

	
LSCONN_ST_USER_ABORTED

	

	
LSCONN_ST_ERROR

	

	
LSCONN_ST_CLOSED

	

	
LSCONN_ST_PEER_GOING_AWAY

	

	
enum lsquic_hsi_flag

	These flags are ORed together to specify properties of
lsxpack_header passed to lsquic_hset_if.hsi_process_header.

	
LSQUIC_HSI_HTTP1X

	Turn HTTP/1.x mode on or off. In this mode, decoded name and value
pair are separated by ": " and "\r\n" is appended to the end
of the string. By default, this mode is off.

	
LSQUIC_HSI_HASH_NAME

	Include name hash into lsxpack_header.

	
LSQUIC_HSI_HASH_NAMEVAL

	Include nameval hash into lsxpack_header.

Global Variables

	
const char *const lsquic_ver2str[N_LSQVER]

	Convert LSQUIC version to human-readable string

List of Log Modules

The following log modules are defined:

	alarmset: Alarm processing.

	bbr: BBRv1 congestion controller.

	bw-sampler: Bandwidth sampler (used by BBR).

	cfcw: Connection flow control window.

	conn: Connection.

	crypto: Low-level Google QUIC cryptography tracing.

	cubic: Cubic congestion controller.

	di: “Data In” handler (storing incoming data before it is read).

	eng-hist: Engine history.

	engine: Engine.

	event: Cross-module significant events.

	frame-reader: Reader of the HEADERS stream in Google QUIC.

	frame-writer: Writer of the HEADERS stream in Google QUIC.

	handshake: Handshake and packet encryption and decryption.

	hcsi-reader: Reader of the HTTP/3 control stream.

	hcso-writer: Writer of the HTTP/3 control stream.

	headers: HEADERS stream (Google QUIC).

	hsk-adapter:

	http1x: Header conversion to HTTP/1.x.

	logger: Logger.

	mini-conn: Mini connection.

	pacer: Pacer.

	parse: Parsing.

	prq: PRQ stands for Packet Request Queue. This logs scheduling
and sending packets not associated with a connection: version
negotiation and stateless resets.

	purga: CID purgatory.

	qdec-hdl: QPACK decoder stream handler.

	qenc-hdl: QPACK encoder stream handler.

	qlog: QLOG output. At the moment, it is out of date.

	qpack-dec: QPACK decoder.

	qpack-enc: QPACK encoder.

	rechist: Receive history.

	sendctl: Send controller.

	sfcw: Stream flow control window.

	spi: Stream priority iterator.

	stream: Stream operation.

	tokgen: Token generation and validation.

	trapa: Transport parameter processing.

Datagrams

lsquic supports the
Unreliable Datagram Extension [https://tools.ietf.org/html/draft-pauly-quic-datagram-05].
To enable datagrams, set lsquic_engine_settings.es_datagrams to
true and specify
lsquic_stream_if.on_datagram
and
lsquic_stream_if.on_dg_write callbacks.

	
int lsquic_conn_want_datagram_write(lsquic_conn_t *conn, int want)

	Indicate desire (or lack thereof) to write a datagram.

	Parameters

	
	conn – Connection on which to send a datagram.

	want – Boolean value indicating whether the caller wants to write
a datagram.

	Returns

	Previous value of want or -1 if the datagrams cannot be
written.

	
size_t lsquic_conn_get_min_datagram_size(lsquic_conn_t *conn)

	Get minimum datagram size. By default, this value is zero.

	
int lsquic_conn_set_min_datagram_size(lsquic_conn_t *conn, size_t sz)

	Set minimum datagram size. This is the minumum value of the buffer
passed to the lsquic_stream_if.on_dg_write callback.
Returns 0 on success and -1 on error.

Internals

Connection Management

References to connections can exist in six different places in an
engine.

[image: _images/lsquic-engine-conns.png]

Index

 A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | N
 | Q
 | R
 | V

A

 	
 	app_index (C member)

B

 	
 	buf (C member)

C

 	
 	chain_next_idx (C member)

D

 	
 	dec_overhead (C member)

F

 	
 	flags:8 (C member)

H

 	
 	hpack_index (C member)

I

 	
 	indexed_type (C member)

L

 	
 	LSENG_HTTP (C macro)

 	LSENG_SERVER (C macro)

 	lsquic_alpn2ver (C function)

 	lsquic_cids_update_f (C type)

 	lsquic_conn_cancel_pending_streams (C function)

 	lsquic_conn_close (C function)

 	lsquic_conn_ctx_t (C type)

 	lsquic_conn_get_ctx (C function)

 	lsquic_conn_get_engine (C function)

 	lsquic_conn_get_min_datagram_size (C function)

 	lsquic_conn_get_peer_ctx (C function)

 	lsquic_conn_get_server_cert_chain (C function)

 	lsquic_conn_get_sockaddr (C function)

 	lsquic_conn_going_away (C function)

 	lsquic_conn_id (C function)

 	lsquic_conn_is_push_enabled (C function)

 	lsquic_conn_make_stream (C function)

 	lsquic_conn_n_avail_streams (C function)

 	lsquic_conn_n_pending_streams (C function)

 	lsquic_conn_push_stream (C function)

 	lsquic_conn_quic_version (C function)

 	lsquic_conn_set_ctx (C function)

 	lsquic_conn_set_min_datagram_size (C function)

 	lsquic_conn_status (C function)

 	LSQUIC_CONN_STATUS (C type)

 	LSQUIC_CONN_STATUS.LSCONN_ST_CLOSED (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_CONNECTED (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_ERROR (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_GOING_AWAY (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_HSK_FAILURE (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_HSK_IN_PROGRESS (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_PEER_GOING_AWAY (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_RESET (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_TIMED_OUT (C member)

 	LSQUIC_CONN_STATUS.LSCONN_ST_USER_ABORTED (C member)

 	lsquic_conn_t (C type)

 	lsquic_conn_want_datagram_write (C function)

 	LSQUIC_DEPRECATED_VERSIONS (C macro)

 	LSQUIC_DF_ALLOW_MIGRATION (C macro)

 	LSQUIC_DF_BASE_PLPMTU (C macro)

 	LSQUIC_DF_CC_ALGO (C macro)

 	LSQUIC_DF_CC_RTT_THRESH (C macro)

 	LSQUIC_DF_CFCW_CLIENT (C macro)

 	LSQUIC_DF_CFCW_SERVER (C macro)

 	LSQUIC_DF_CLOCK_GRANULARITY (C macro)

 	LSQUIC_DF_DATAGRAMS (C macro)

 	LSQUIC_DF_DELAYED_ACKS (C macro)

 	LSQUIC_DF_DPLPMTUD (C macro)

 	LSQUIC_DF_ECN (C macro)

 	LSQUIC_DF_GREASE_QUIC_BIT (C macro)

 	LSQUIC_DF_HANDSHAKE_TO (C macro)

 	LSQUIC_DF_HONOR_PRST (C macro)

 	LSQUIC_DF_IDLE_CONN_TO (C macro)

 	LSQUIC_DF_IDLE_TIMEOUT (C macro)

 	LSQUIC_DF_INIT_MAX_DATA_CLIENT (C macro)

 	LSQUIC_DF_INIT_MAX_DATA_SERVER (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT (C macro)

 	LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER (C macro)

 	LSQUIC_DF_INIT_MAX_STREAMS_BIDI (C macro)

 	LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT (C macro)

 	LSQUIC_DF_INIT_MAX_STREAMS_UNI_SERVER (C macro)

 	LSQUIC_DF_MAX_HEADER_LIST_SIZE (C macro)

 	LSQUIC_DF_MAX_INCHOATE (C macro)

 	LSQUIC_DF_MAX_PLPMTU (C macro)

 	LSQUIC_DF_MAX_STREAMS_IN (C macro)

 	LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX (C macro)

 	LSQUIC_DF_MTU_PROBE_TIMER (C macro)

 	LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT (C macro)

 	LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER (C macro)

 	LSQUIC_DF_OPTIMISTIC_NAT (C macro)

 	LSQUIC_DF_PACE_PACKETS (C macro)

 	LSQUIC_DF_PING_PERIOD (C macro)

 	LSQUIC_DF_PROC_TIME_THRESH (C macro)

 	LSQUIC_DF_PROGRESS_CHECK (C macro)

 	LSQUIC_DF_QL_BITS (C macro)

 	LSQUIC_DF_QPACK_DEC_MAX_BLOCKED (C macro)

 	LSQUIC_DF_QPACK_DEC_MAX_SIZE (C macro)

 	LSQUIC_DF_QPACK_ENC_MAX_BLOCKED (C macro)

 	LSQUIC_DF_QPACK_ENC_MAX_SIZE (C macro)

 	LSQUIC_DF_RW_ONCE (C macro)

 	LSQUIC_DF_SCID_ISS_RATE (C macro)

 	LSQUIC_DF_SCID_LEN (C macro)

 	LSQUIC_DF_SEND_PRST (C macro)

 	LSQUIC_DF_SFCW_CLIENT (C macro)

 	LSQUIC_DF_SFCW_SERVER (C macro)

 	LSQUIC_DF_SILENT_CLOSE (C macro)

 	LSQUIC_DF_SPIN (C macro)

 	LSQUIC_DF_SUPPORT_NSTP (C macro)

 	LSQUIC_DF_SUPPORT_PUSH (C macro)

 	LSQUIC_DF_SUPPORT_TCID0 (C macro)

 	LSQUIC_DF_TIMESTAMPS (C macro)

 	LSQUIC_DF_UA (C macro)

 	LSQUIC_DF_VERSIONS (C macro)

 	lsquic_engine_api (C type)

 	lsquic_engine_api.ea_alpn (C member)

 	lsquic_engine_api.ea_cert_lu_ctx (C member)

 	lsquic_engine_api.ea_cids_update_ctx (C member)

 	lsquic_engine_api.ea_get_ssl_ctx (C member)

 	lsquic_engine_api.ea_hsi_ctx (C member)

 	lsquic_engine_api.ea_hsi_if (C member)

 	lsquic_engine_api.ea_live_scids (C member)

 	lsquic_engine_api.ea_lookup_cert (C member)

 	lsquic_engine_api.ea_new_scids (C member)

 	lsquic_engine_api.ea_old_scids (C member)

 	lsquic_engine_api.ea_packets_out (C member)

 	lsquic_engine_api.ea_packets_out_ctx (C member)

 	lsquic_engine_api.ea_pmi (C member)

 	lsquic_engine_api.ea_pmi_ctx (C member)

 	lsquic_engine_api.ea_settings (C member)

 	lsquic_engine_api.ea_shi (C member)

 	lsquic_engine_api.ea_shi_ctx (C member)

 	lsquic_engine_api.ea_stream_if (C member)

 	lsquic_engine_api.ea_stream_if_ctx (C member)

 	lsquic_engine_check_settings (C function)

 	lsquic_engine_connect (C function)

 	lsquic_engine_cooldown (C function)

 	lsquic_engine_count_attq (C function)

 	lsquic_engine_destroy (C function)

 	lsquic_engine_earliest_adv_tick (C function)

 	lsquic_engine_has_unsent_packets (C function)

 	lsquic_engine_init_settings (C function)

 	lsquic_engine_new (C function)

 	lsquic_engine_packet_in (C function)

 	lsquic_engine_process_conns (C function)

 	lsquic_engine_quic_versions (C function)

 	lsquic_engine_send_unsent_packets (C function)

 	lsquic_engine_settings (C type)

 	lsquic_engine_settings.es_allow_migration (C member)

 	lsquic_engine_settings.es_base_plpmtu (C member)

 	lsquic_engine_settings.es_cc_algo (C member)

 	lsquic_engine_settings.es_cc_rtt_thresh (C member)

 	lsquic_engine_settings.es_cfcw (C member)

 	lsquic_engine_settings.es_clock_granularity (C member)

 	lsquic_engine_settings.es_datagrams (C member)

 	lsquic_engine_settings.es_delayed_acks (C member)

 	lsquic_engine_settings.es_dplpmtud (C member)

 	lsquic_engine_settings.es_ecn (C member)

 	lsquic_engine_settings.es_grease_quic_bit (C member)

 	lsquic_engine_settings.es_handshake_to (C member)

 	lsquic_engine_settings.es_honor_prst (C member)

 	
 	lsquic_engine_settings.es_idle_conn_to (C member)

 	lsquic_engine_settings.es_idle_timeout (C member)

 	lsquic_engine_settings.es_init_max_data (C member)

 	lsquic_engine_settings.es_init_max_stream_data_bidi_local (C member)

 	lsquic_engine_settings.es_init_max_stream_data_bidi_remote (C member)

 	lsquic_engine_settings.es_init_max_stream_data_uni (C member)

 	lsquic_engine_settings.es_init_max_streams_bidi (C member)

 	lsquic_engine_settings.es_init_max_streams_uni (C member)

 	lsquic_engine_settings.es_max_cfcw (C member)

 	lsquic_engine_settings.es_max_header_list_size (C member)

 	lsquic_engine_settings.es_max_inchoate (C member)

 	lsquic_engine_settings.es_max_plpmtu (C member)

 	lsquic_engine_settings.es_max_sfcw (C member)

 	lsquic_engine_settings.es_max_streams_in (C member)

 	lsquic_engine_settings.es_max_udp_payload_size_rx (C member)

 	lsquic_engine_settings.es_mtu_probe_timer (C member)

 	lsquic_engine_settings.es_noprogress_timeout (C member)

 	lsquic_engine_settings.es_optimistic_nat (C member)

 	lsquic_engine_settings.es_pace_packets (C member)

 	lsquic_engine_settings.es_ping_period (C member)

 	lsquic_engine_settings.es_proc_time_thresh (C member)

 	lsquic_engine_settings.es_progress_check (C member)

 	lsquic_engine_settings.es_ql_bits (C member)

 	lsquic_engine_settings.es_qpack_dec_max_blocked (C member)

 	lsquic_engine_settings.es_qpack_dec_max_size (C member)

 	lsquic_engine_settings.es_qpack_enc_max_blocked (C member)

 	lsquic_engine_settings.es_qpack_enc_max_size (C member)

 	lsquic_engine_settings.es_rw_once (C member)

 	lsquic_engine_settings.es_scid_iss_rate (C member)

 	lsquic_engine_settings.es_scid_len (C member)

 	lsquic_engine_settings.es_send_prst (C member)

 	lsquic_engine_settings.es_sfcw (C member)

 	lsquic_engine_settings.es_silent_close (C member)

 	lsquic_engine_settings.es_spin (C member)

 	lsquic_engine_settings.es_support_nstp (C member)

 	lsquic_engine_settings.es_support_push (C member)

 	lsquic_engine_settings.es_support_tcid0 (C member)

 	lsquic_engine_settings.es_timestamps (C member)

 	lsquic_engine_settings.es_ua (C member)

 	lsquic_engine_settings.es_versions (C member)

 	lsquic_engine_t (C type)

 	LSQUIC_EXPERIMENTAL_VERSIONS (C macro)

 	LSQUIC_FORCED_TCID0_VERSIONS (C macro)

 	LSQUIC_GQUIC_HEADER_VERSIONS (C macro)

 	lsquic_hset_if (C type)

 	lsquic_hset_if.hsi_create_header_set (C member)

 	lsquic_hset_if.hsi_discard_header_set (C member)

 	lsquic_hset_if.hsi_flags (C member)

 	lsquic_hset_if.hsi_prepare_decode (C member)

 	lsquic_hset_if.hsi_process_header (C member)

 	lsquic_hsi_flag (C type)

 	lsquic_hsi_flag.LSQUIC_HSI_HASH_NAME (C member)

 	lsquic_hsi_flag.LSQUIC_HSI_HASH_NAMEVAL (C member)

 	lsquic_hsi_flag.LSQUIC_HSI_HTTP1X (C member)

 	lsquic_http_headers_t (C type), [1]

 	lsquic_http_headers_t.count (C member)

 	lsquic_http_headers_t.headers (C member)

 	LSQUIC_IETF_DRAFT_VERSIONS (C macro)

 	LSQUIC_IETF_VERSIONS (C macro)

 	lsquic_keylog_if (C type)

 	lsquic_keylog_if.kli_close (C member)

 	lsquic_keylog_if.kli_log_line (C member)

 	lsquic_keylog_if.kli_open (C member)

 	lsquic_logger_if (C type)

 	lsquic_logger_if.log_buf (C member)

 	lsquic_logger_init (C function)

 	lsquic_logger_lopt (C function)

 	lsquic_logger_timestamp_style (C type)

 	lsquic_logger_timestamp_style.LLTS_CHROMELIKE (C member)

 	lsquic_logger_timestamp_style.LLTS_HHMMSSMS (C member)

 	lsquic_logger_timestamp_style.LLTS_HHMMSSUS (C member)

 	lsquic_logger_timestamp_style.LLTS_NONE (C member)

 	lsquic_logger_timestamp_style.LLTS_YYYYMMDD_HHMMSSMS (C member)

 	lsquic_logger_timestamp_style.LLTS_YYYYMMDD_HHMMSSUS (C member)

 	LSQUIC_MIN_FCW (C macro)

 	lsquic_out_spec (C type)

 	lsquic_out_spec.dest_sa (C member)

 	lsquic_out_spec.ecn (C member)

 	lsquic_out_spec.iov (C member)

 	lsquic_out_spec.iovlen (C member)

 	lsquic_out_spec.local_sa (C member)

 	lsquic_out_spec.peer_ctx (C member)

 	lsquic_packets_out_f (C type)

 	lsquic_packout_mem_if (C type)

 	lsquic_packout_mem_if.pmi_allocate (C member)

 	lsquic_packout_mem_if.pmi_release (C member)

 	lsquic_packout_mem_if.pmi_return (C member)

 	lsquic_reader (C type)

 	lsquic_reader.lsqr_ctx (C member)

 	lsquic_reader.lsqr_read (C member)

 	lsquic_reader.lsqr_size (C member)

 	lsquic_set_log_level (C function)

 	lsquic_shared_hash_if (C type)

 	lsquic_shared_hash_if.shi_delete (C member)

 	lsquic_shared_hash_if.shi_insert (C member)

 	lsquic_shared_hash_if.shi_lookup (C member)

 	lsquic_str2ver (C function)

 	lsquic_stream_close (C function)

 	lsquic_stream_conn (C function)

 	lsquic_stream_ctx_t (C type)

 	lsquic_stream_flush (C function)

 	lsquic_stream_get_hset (C function)

 	lsquic_stream_id_t (C type)

 	lsquic_stream_if (C type)

 	lsquic_stream_if.on_close (C member)

 	lsquic_stream_if.on_conn_closed (C member)

 	lsquic_stream_if.on_datagram (C member)

 	lsquic_stream_if.on_dg_write (C member)

 	lsquic_stream_if.on_goaway_received (C member)

 	lsquic_stream_if.on_hsk_done (C member)

 	lsquic_stream_if.on_new_conn (C member)

 	lsquic_stream_if.on_new_stream (C member)

 	lsquic_stream_if.on_new_token (C member)

 	lsquic_stream_if.on_read (C member)

 	lsquic_stream_if.on_sess_resume_info (C member)

 	lsquic_stream_if.on_write (C member)

 	lsquic_stream_is_pushed (C function)

 	lsquic_stream_is_rejected (C function)

 	lsquic_stream_priority (C function)

 	lsquic_stream_push_info (C function)

 	lsquic_stream_pwritev (C function)

 	lsquic_stream_read (C function)

 	lsquic_stream_readf (C function)

 	lsquic_stream_readv (C function)

 	lsquic_stream_refuse_push (C function)

 	lsquic_stream_send_headers (C function)

 	lsquic_stream_set_priority (C function)

 	lsquic_stream_shutdown (C function)

 	lsquic_stream_t (C type)

 	lsquic_stream_wantread (C function)

 	lsquic_stream_wantwrite (C function)

 	lsquic_stream_write (C function)

 	lsquic_stream_writef (C function)

 	lsquic_stream_writev (C function)

 	LSQUIC_SUPPORTED_VERSIONS (C macro)

 	lsquic_version (C type)

 	lsquic_version.LSQVER_043 (C member)

 	lsquic_version.LSQVER_046 (C member)

 	lsquic_version.LSQVER_050 (C member)

 	lsquic_version.LSQVER_ID27 (C member)

 	lsquic_version.LSQVER_ID28 (C member)

 	lsquic_version.LSQVER_ID29 (C member)

 	lsquic_version.LSQVER_ID30 (C member)

 	lsquic_version.N_LSQVER (C member)

 	lsxpack_header (C type)

N

 	
 	name_hash (C member)

 	name_len (C member)

 	
 	name_offset (C member)

 	nameval_hash (C member)

Q

 	
 	qpack_index (C member)

R

 	
 	
 RFC

 	RFC 3168

 	RFC 7540#section-6.5.2

 	RFC 8085#section-3.1

V

 	
 	val_len (C member)

 	
 	val_offset (C member)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 LSQUIC Documentation

 		
 Getting Started

 		
 Supported Platforms

 		
 Dependencies

 		
 What’s in the box

 		
 Building

 		
 Demo Examples

 		
 Next steps

 		
 Tutorial

 		
 Introduction

 		
 Engine

 		
 Connection

 		
 Stream

 		
 HTTP Mode

 		
 Include Files

 		
 Library Initialization

 		
 Engine Instantiation

 		
 Engine Configuration

 		
 Engine Settings

 		
 Receiving Packets

 		
 Why specify local address

 		
 Sending Packets

 		
 When an error occurs

 		
 Outgoing Packet Specification

 		
 When to process connections

 		
 Example with libev

 		
 Processing Connections

 		
 Required Engine Callbacks

 		
 Optional Callbacks

 		
 Stream and connection callbacks

 		
 On new connection

 		
 On new stream

 		
 On read

 		
 On write

 		
 On stream close

 		
 On connection close

 		
 Using Streams

 		
 More stream functions

 		
 Stream return values

 		
 Scatter/gather stream functions

 		
 Read using a callback

 		
 Read with callback: Example 1

 		
 Read with callback: Example 2: Use FIN

 		
 Writing to stream: Example 1

 		
 Write using callbacks

 		
 Writing to stream: Example 2

 		
 Client: making connection

 		
 Specifying QUIC version

 		
 Server callbacks

 		
 Engine settings

 		
 Settings helper functions

 		
 Settings example

 		
 Logging

 		
 Logging Example

 		
 Sample log messages

 		
 Key logging and Wireshark

 		
 Key logging example

 		
 Wireshark screenshot

 		
 Connection IDs

 		
 Get this-and-that API

 		
 API Reference

 		
 Preliminaries

 		
 Library Version

 		
 QUIC Versions

 		
 LSQUIC Types

 		
 Library Initialization

 		
 Logging

 		
 Engine Instantiation and Destruction

 		
 Engine Callbacks

 		
 Engine Settings

 		
 Receiving Packets

 		
 Sending Packets

 		
 Stream Callback Interface

 		
 Creating Connections

 		
 Closing Connections

 		
 Creating Streams

 		
 Stream Events

 		
 Reading From Streams

 		
 Writing To Streams

 		
 Closing Streams

 		
 Sending HTTP Headers

 		
 Receiving HTTP Headers

 		
 Push Promises

 		
 Stream Priorities

 		
 Miscellaneous Engine Functions

 		
 Miscellaneous Connection Functions

 		
 Miscellaneous Stream Functions

 		
 Other Functions

 		
 Miscellaneous Types

 		
 Global Variables

 		
 List of Log Modules

 		
 Datagrams

 		
 Internals

 		
 Connection Management

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/wireshark-screenshot.png
No. Time Source Destination Protocol Length Info
16 2.570135 127.6.6.1 127.0.0.1 QUIC 83 Protected Payload (KPB), DCID=e77ce754b2d32f6c,
17 2.92a101 127.6.6.1 127.0.0.1 QUIC 78 Protected Payload (KPB), DCID=e77ce754b2d32f6c,
18 2.925751 127.0.0.1 127.6.6.1 QUIC 98 Protected Payload (KPD), DCID=be3ac0381d9049es,
19 2.927297 127.6.6.1 127.0.0.1 QUIC 81 Protected Payload (KPB), DCID=e77ce754b2d32f6c,
20 2942133 127.0.0.1 QUIC 97 Protected Payload (KPB), DCID=be3ac6381d9843e8,

7, A
8, STREAM(0)

11, ACK, STREAM(.
9, ACK L

v Ak
Frame Type: ACK (2x0000000000000002)
Largest Acknowledged: &

ACK Delay: 46
ACK Range Count: @
First ACK Range: 3

v TIME_STAMP
Frame Type: TINE_STAMP (@x00000000000002f5)
Time Stamp: 365556

v STREAN id=@ fin=1 off=0 len=7 uni=g

v Frame Type: STREAM (2x200000000000000b)
= Fin: True

Len(gth): True

= off(set): False

o010

_static/ajax-loader.gif

_images/lsquic-engine-conns.png
CiDiconnection
hash

Next Timeto Tick
Min-Heap.

Tickable Now
Queue

Has Outgoing
Packets Queue

Closing
Queve

Connection A

= cin1

Connection B

cin2

Connection C

cn3

cin4

cins

cine

cn7

This diagram shows how engine manages
connections. One can see that they can
be referenced from six different places.
When connection's reference count goes
to zero, it is destroyed.

