

    
      
          
            
  
LSQUIC Documentation

This is the documentation for LSQUIC [https://github.com/litespeedtech/lsquic] 2.18.2, last updated Jul 22, 2020.

LiteSpeed QUIC (LSQUIC) Library is an open-source implementation of QUIC
and HTTP/3 functionality for servers and clients.  LSQUIC is:


	fast;


	flexible; and


	production-ready.




Most of the code in this distribution has been  used in our own products
– LiteSpeed Web Server [https://www.litespeedtech.com/products/litespeed-web-server/], LiteSpeed Web ADC [https://www.litespeedtech.com/products/litespeed-web-adc/], and OpenLiteSpeed [https://openlitespeed.org/] –
since 2017.

Currently supported QUIC versions are Q043, Q046, Q050, ID-27, and ID-28.
Support for newer versions will be added soon after they are released.

LSQUIC is licensed under the MIT License [http://www.opensource.org/licenses/mit-license.php]; see LICENSE in the source
distribution for details.


Contents



	Getting Started
	Supported Platforms

	Dependencies

	What’s in the box

	Building

	Demo Examples

	Next steps





	Tutorial
	Introduction

	Library Initialization

	Engine Instantiation

	Sending Packets

	Receiving Packets

	Running Connections

	Stream Reading and Writing





	API Reference
	Preliminaries

	Library Version

	QUIC Versions

	LSQUIC Types

	Library Initialization

	Logging

	Engine Instantiation and Destruction

	Engine Callbacks

	Engine Settings

	Receiving Packets

	Sending Packets

	Stream Callback Interface

	Creating Connections

	Closing Connections

	Creating Streams

	Stream Events

	Reading From Streams

	Writing To Streams

	Closing Streams

	Sending HTTP Headers

	Receiving HTTP Headers

	Push Promises

	Stream Priorities

	Miscellaneous Engine Functions

	Miscellaneous Connection Functions

	Miscellaneous Stream Functions

	Other Functions

	Miscellaneous Types

	Global Variables

	List of Log Modules





	Internals
	Connection Management














Indices and tables


	Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Getting Started


Supported Platforms

LSQUIC compiles and runs on Linux, Windows, FreeBSD, Mac OS, and Android.
It has been tested on i386, x86_64, and ARM (Raspberry Pi and Android).




Dependencies

LSQUIC library uses:


	zlib [https://www.zlib.net/];


	BoringSSL [https://boringssl.googlesource.com/boringssl/]; and


	ls-hpack [https://github.com/litespeedtech/ls-hpack] (as a Git submodule).


	ls-qpack [https://github.com/litespeedtech/ls-qpack] (as a Git submodule).




The accompanying demo command-line tools use libevent [https://libevent.org/].




What’s in the box


	src/liblsquic – the library


	bin – demo client and server programs


	tests – unit tests







Building

To build the library, follow instructions in the README [https://github.com/litespeedtech/lsquic/blob/master/README.md] file.




Demo Examples

Fetch Google home page:

./http_client -s www.google.com -p / -o version=Q050





Run your own server (it does not touch the filesystem, don’t worry):

./http_server -c www.example.com,fullchain.pem,privkey.pem -s 0.0.0.0:4433





Grab a page from your server:

./http_client -H www.example.com -s 127.0.0.1:4433 -p /





You can play with various options, of which there are many.  Use
the -h command-line flag to see them.




Next steps

If you want to use LSQUIC in your program, check out the Tutorial and
the API Reference.

Internals covers some library internals.







          

      

      

    

  

    
      
          
            
  
Tutorial


Introduction

The LSQUIC library provides facilities for operating a QUIC (Google QUIC
or IETF QUIC) server or client with optional HTTP (or HTTP/3) functionality.
To do that, it specifies an application programming interface (API) and
exposes several basic object types to operate upon:


	engine;


	connection; and


	stream.




An engine manages connections, processes incoming packets, and schedules
outgoing packets.  An engine operates in one of two modes: client or server.

The LSQUIC library does not use sockets to receive and send packets; that is
handled by the user-supplied callbacks.  The library also does not mandate
the use of any particular event loop.  Instead, it has functions to help the
user schedule events.  (Thus, using an event loop is not even strictly
necessary.)  The various callbacks and settings are supplied to the engine
constructor.

A connection carries one or more streams, ensures reliable data delivery,
and handles the protocol details.

A stream usually corresponds to a request/response pair: a client sends
its request over a single stream and a server sends its response back
using the same stream.  This is the Google QUIC and HTTP/3 use case.
Nevertheless, the library does not limit one to this scenario.  Any
application protocol can be implemented using LSQUIC – as long as it
can be implemented using the QUIC transport protocol.  The library provides
hooks for stream events: when a stream is created or closed, when it has
data to read or when it can be written to, and so on.

In the following sections, we will describe how to:


	initialize the library;


	configure and instantiate an engine object;


	send and receive packets; and


	work with connections and streams.





Include Files

A single include file, lsquic.h, contains all the necessary
LSQUIC declarations:

#include <lsquic.h>










Library Initialization

Before the first engine object is instantiate, the library must be
initialized using lsquic_global_init():

if (0 != lsquic_global_init(LSQUIC_GLOBAL_CLIENT|LSQUIC_GLOBAL_SERVER))
{
    exit(EXIT_FAILURE);
}
/* OK, do something useful */





If you plan to instantiate engines only in a single mode, client or server,
you can omit the appropriate flag.

After all engines have been destroyed and the LSQUIC library is no longer
going to be used, the global initialization can be undone:

lsquic_global_cleanup();
exit(EXIT_SUCCESS);








Engine Instantiation

Engine instantiation is performed by lsquic_engine_new():

/* Create an engine in server mode with HTTP behavior: */
lsquic_engine_t *engine
    = lsquic_engine_new(LSENG_SERVER|LSENG_HTTP, &engine_api);





The engine mode is selected by using the LSENG_SERVER flag.
If present, the engine will be in server mode; if not, the engine will
be in client mode.  If you need both server and client functionality
in your program, instantiate two engines (or as many as you like).

Using the LSENG_HTTP flag enables the HTTP behavior:  The library
hides the interaction between the HTTP application layer and the QUIC
transport layer and presents a simple, unified (between Google QUIC and
HTTP/3) way of sending and receiving HTTP messages.  Behind the scenes,
the library will compress and uncompress HTTP headers, add and remove
HTTP/3 stream framing, and operate the necessary control streams.


Engine Configuration

The second argument to lsquic_engine_new() is a pointer to
a struct of type lsquic_engine_api.  This structure lists
several user-specified function pointers that the engine is to use
to perform various functions.  Mandatory among these are:


	function to set packets out, lsquic_engine_api.ea_packets_out;


	functions linked to connection and stream events,
lsquic_engine_api.ea_stream_if;


	function to look up certificate to use, lsquic_engine_api.ea_lookup_cert (in server mode); and


	function to fetch SSL context, lsquic_engine_api.ea_get_ssl_ctx (in server mode).




The minimal structure for a client will look like this:

lsquic_engine_api engine_api = {
    .ea_packets_out     = send_packets_out,
    .ea_packets_out_ctx = (void *) sockfd,  /* For example */
    .ea_stream_if       = &stream_callbacks,
    .ea_stream_if_ctx   = &some_context,
};








Engine Settings

Engine settings can be changed by specifying
lsquic_engine_api.ea_settings.  There are many parameters
to tweak: supported QUIC versions, amount of memory dedicated to connections
and streams, various timeout values, and so on.  See
Engine Settings for full details.  If ea_settings is set
to NULL, the engine will use the defaults, which should be OK.






Sending Packets

The lsquic_engine_api.ea_packets_out is the function that gets
called when an engine instance has packets to send.  It could look like
this:

/* Return number of packets sent or -1 on error */
static int
send_packets_out (void *ctx, const struct lsquic_out_spec *specs,
                                                unsigned n_specs)
{
    struct msghdr msg;
    int sockfd;
    unsigned n;

    memset(&msg, 0, sizeof(msg));
    sockfd = (int) (uintptr_t) ctx;

    for (n = 0; n < n_specs; ++n)
    {
        msg.msg_name       = (void *) specs[n].dest_sa;
        msg.msg_namelen    = sizeof(struct sockaddr_in);
        msg.msg_iov        = specs[n].iov;
        msg.msg_iovlen     = specs[n].iovlen;
        if (sendmsg(sockfd, &msg, 0) < 0)
            break;
    }

    return (int) n;
}





Note that the version above is very simple.  lsquic_out_spec
also specifies local address as well as ECN value.  These are set
using ancillary data in a platform-dependent way.




Receiving Packets

The user reads packets and provides them to an engine instance using
lsquic_engine_packet_in().

TODO




Running Connections

A connection needs to be processed once in a while.  It needs to be
processed when one of the following is true:


	There are incoming packets;


	A stream is both readable by the user code and the user code wants
to read from it;


	A stream is both writeable by the user code and the user code wants
to write to it;


	User has written to stream outside of on_write() callbacks (that is
allowed) and now there are packets ready to be sent;


	A timer (pacer, retransmission, idle, etc) has expired;


	A control frame needs to be sent out;


	A stream needs to be serviced or created.




Each of these use cases is handled by a single function,
lsquic_engine_process_conns().

The connections to which the conditions above apply are processed (or
“ticked”) in the least recently ticked order.  After calling this function,
you can see when is the next time a connection needs to be processed using
lsquic_engine_earliest_adv_tick().

Based on this value, next event can be scheduled (in the event loop of
your choice).




Stream Reading and Writing

Reading from (or writing to) a stream is best down when that stream is
readable (or writeable).  To register an interest in an event,







          

      

      

    

  

    
      
          
            
  
API Reference


Preliminaries

All declarations are in lsquic.h, so it is enough to

#incluide <lsquic.h>





in each source file.




Library Version

LSQUIC follows the following versioning model.  The version number
has the form MAJOR.MINOR.PATCH, where


	MAJOR changes when a large redesign occurs;


	MINOR changes when an API change or another significant change occurs; and


	PATCH changes when a bug is fixed or another small, API-compatible change occurs.







QUIC Versions

LSQUIC supports two types of QUIC protocol: Google QUIC and IETF QUIC.  The
former will at some point become obsolete, while the latter is still being
developed by the IETF.  Both types are included in a single enum:


	
enum lsquic_version

	
	
LSQVER_043

	Google QUIC version Q043






	
LSQVER_046

	Google QUIC version Q046






	
LSQVER_050

	Google QUIC version Q050






	
LSQVER_ID27

	IETF QUIC version ID (Internet-Draft) 27






	
LSQVER_ID28

	IETF QUIC version ID 28






	
LSQVER_ID29

	IETF QUIC version ID 29






	
N_LSQVER

	Special value indicating the number of versions in the enum.  It
may be used as argument to lsquic_engine_connect().









Several version lists (as bitmasks) are defined in lsquic.h:


	
LSQUIC_SUPPORTED_VERSIONS

	



List of all supported versions.


	
LSQUIC_FORCED_TCID0_VERSIONS

	



List of versions in which the server never includes CID in short packets.


	
LSQUIC_EXPERIMENTAL_VERSIONS

	



Experimental versions.


	
LSQUIC_DEPRECATED_VERSIONS

	



Deprecated versions.


	
LSQUIC_GQUIC_HEADER_VERSIONS

	



Versions that have Google QUIC-like headers.  Only Q043 remains in this
list.


	
LSQUIC_IETF_VERSIONS

	



IETF QUIC versions.


	
LSQUIC_IETF_DRAFT_VERSIONS

	



IETF QUIC draft versions.  When IETF QUIC v1 is released, it will not
be included in this list.




LSQUIC Types

LSQUIC declares several types used by many of its public functions.  They are:


	
lsquic_engine_t

	Instance of LSQUIC engine.






	
lsquic_conn_t

	QUIC connection.






	
lsquic_stream_t

	QUIC stream.






	
lsquic_stream_id_t

	Stream ID.






	
lsquic_conn_ctx_t

	Connection context.  This is the return value of lsquic_stream_if.on_new_conn.
To LSQUIC, this is just an opaque pointer.  User code is expected to
use it for its own purposes.






	
lsquic_stream_ctx_t

	Stream context.  This is the return value of on_new_stream().
To LSQUIC, this is just an opaque pointer.  User code is expected to
use it for its own purposes.






	
lsquic_http_headers_t

	HTTP headers








Library Initialization

Before using the library, internal structures must be initialized using
the global initialization function:

if (0 == lsquic_global_init(LSQUIC_GLOBAL_CLIENT|LSQUIC_GLOBAL_SERVER))
    /* OK, do something useful */
    ;





This call only needs to be made once.  Afterwards, any number of LSQUIC
engines may be instantiated.

After a process is done using LSQUIC, it should clean up:

lsquic_global_cleanup();








Logging


	
struct lsquic_logger_if

	
	
int     (*log_buf)(void *logger_ctx, const char *buf, size_t len)

	








	
void lsquic_logger_init(const struct lsquic_logger_if *logger_if, void *logger_ctx, enum lsquic_logger_timestamp_style)

	Call this if you want to do something with LSQUIC log messages, as they are thrown out by default.






	
int lsquic_set_log_level(const char *log_level)

	Set log level for all LSQUIC modules.


	Parameters

	
	log_level – Acceptable values are debug, info, notice, warning, error, alert, emerg, crit (case-insensitive).






	Returns

	0 on success or -1 on failure (invalid log level).










	
int lsquic_logger_lopt(const char *log_specs)

	Set log level for a particular module or several modules.


	Parameters

	
	log_specs – One or more “module=level” specifications serapated by comma.
For example, “event=debug,engine=info”.  See List of Log Modules















Engine Instantiation and Destruction

To use the library, an instance of the struct lsquic_engine needs to be
created:


	
lsquic_engine_t *lsquic_engine_new(unsigned flags, const struct lsquic_engine_api *api)

	Create a new engine.


	Parameters

	
	flags – This is is a bitmask of LSENG_SERVER and
LSENG_HTTP.


	api – Pointer to an initialized lsquic_engine_api.








The engine can be instantiated either in server mode (when LSENG_SERVER
is set) or client mode.  If you need both server and client in your program,
create two engines (or as many as you’d like).

Specifying LSENG_HTTP flag enables the HTTP functionality: HTTP/2-like
for Google QUIC connections and HTTP/3 functionality for IETF QUIC
connections.






	
LSENG_SERVER

	One of possible bitmask values passed as first argument to
lsquic_engine_new.  When set, the engine instance
will be in the server mode.






	
LSENG_HTTP

	One of possible bitmask values passed as first argument to
lsquic_engine_new.  When set, the engine instance
will enable HTTP functionality.






	
void lsquic_engine_cooldown(lsquic_engine_t *engine)

	This function closes all mini connections and marks all full connections
as going away.  In server mode, this also causes the engine to stop
creating new connections.






	
void lsquic_engine_destroy(lsquic_engine_t *engine)

	Destroy engine and all its resources.








Engine Callbacks

struct lsquic_engine_api contains a few mandatory members and several
optional members.


	
struct lsquic_engine_api

	
	
const struct lsquic_stream_if       *ea_stream_if

	




	
void                                *ea_stream_if_ctx

	ea_stream_if is mandatory.  This structure contains pointers
to callbacks that handle connections and stream events.






	
lsquic_packets_out_f                 ea_packets_out

	




	
void                                *ea_packets_out_ctx

	ea_packets_out is used by the engine to send packets.






	
const struct lsquic_engine_settings *ea_settings

	If ea_settings is set to NULL, the engine uses default settings
(see lsquic_engine_init_settings())






	
lsquic_lookup_cert_f                 ea_lookup_cert

	




	
void                                *ea_cert_lu_ctx

	Look up certificate.  Mandatory in server mode.






	
struct ssl_ctx_st *                (*ea_get_ssl_ctx)(void *peer_ctx)

	Get SSL_CTX associated with a peer context.  Mandatory in server
mode.  This is use for default values for SSL instantiation.






	
const struct lsquic_hset_if         *ea_hsi_if

	




	
void                                *ea_hsi_ctx

	Optional header set interface.  If not specified, the incoming headers
are converted to HTTP/1.x format and are read from stream and have to
be parsed again.






	
const struct lsquic_shared_hash_if  *ea_shi

	




	
void                                *ea_shi_ctx

	Shared hash interface can be used to share state between several
processes of a single QUIC server.






	
const struct lsquic_packout_mem_if  *ea_pmi

	




	
void                                *ea_pmi_ctx

	Optional set of functions to manage memory allocation for outgoing
packets.






	
lsquic_cids_update_f                 ea_new_scids

	




	
lsquic_cids_update_f                 ea_live_scids

	




	
lsquic_cids_update_f                 ea_old_scids

	




	
void                                *ea_cids_update_ctx

	In a multi-process setup, it may be useful to observe the CID
lifecycle.  This optional set of callbacks makes it possible.






	
const char                          *ea_alpn

	The optional ALPN string is used by the client if LSENG_HTTP
is not set.












Engine Settings

Engine behavior can be controlled by several settings specified in the
settings structure:


	
struct lsquic_engine_settings

	
	
unsigned        es_versions

	This is a bit mask wherein each bit corresponds to a value in
lsquic_version.  Client starts negotiating with the highest
version and goes down.  Server supports either of the versions
specified here.  This setting applies to both Google and IETF QUIC.

The default value is LSQUIC_DF_VERSIONS.






	
unsigned        es_cfcw

	Initial default connection flow control window.

In server mode, per-connection values may be set lower than
this if resources are scarce.

Do not set es_cfcw and es_sfcw lower than LSQUIC_MIN_FCW.






	
unsigned        es_sfcw

	Initial default stream flow control window.

In server mode, per-connection values may be set lower than
this if resources are scarce.

Do not set es_cfcw and es_sfcw lower than LSQUIC_MIN_FCW.






	
unsigned        es_max_cfcw

	This value is used to specify maximum allowed value CFCW is allowed
to reach due to window auto-tuning.  By default, this value is zero,
which means that CFCW is not allowed to increase from its initial
value.

This setting is applicable to both gQUIC and IETF QUIC.

See lsquic_engine_settings.es_cfcw,
lsquic_engine_settings.es_init_max_data.






	
unsigned        es_max_sfcw

	This value is used to specify the maximum value stream flow control
window is allowed to reach due to auto-tuning.  By default, this
value is zero, meaning that auto-tuning is turned off.

This setting is applicable to both gQUIC and IETF QUIC.

See lsquic_engine_settings.es_sfcw,
lsquic_engine_settings.es_init_max_stream_data_bidi_local,
lsquic_engine_settings.es_init_max_stream_data_bidi_remote.






	
unsigned        es_max_streams_in

	Maximum incoming streams, a.k.a. MIDS.

Google QUIC only.






	
unsigned long   es_handshake_to

	Handshake timeout in microseconds.

For client, this can be set to an arbitrary value (zero turns the
timeout off).

For server, this value is limited to about 16 seconds.  Do not set
it to zero.

Defaults to LSQUIC_DF_HANDSHAKE_TO.






	
unsigned long   es_idle_conn_to

	Idle connection timeout, a.k.a ICSL, in microseconds; GQUIC only.

Defaults to LSQUIC_DF_IDLE_CONN_TO






	
int             es_silent_close

	SCLS (silent close)






	
unsigned        es_max_header_list_size

	This corresponds to SETTINGS_MAX_HEADER_LIST_SIZE
(RFC 7540#section-6.5.2 [https://tools.ietf.org/html/rfc7540.html#section-6.5.2]).  0 means no limit.  Defaults
to LSQUIC_DF_MAX_HEADER_LIST_SIZE().






	
const char     *es_ua

	
UAID – User-Agent ID.  Defaults to LSQUIC_DF_UA.

Google QUIC only.




More parameters for server






	
unsigned        es_max_inchoate

	Maximum number of incoming connections in inchoate state.  (In
other words, maximum number of mini connections.)

This is only applicable in server mode.

Defaults to LSQUIC_DF_MAX_INCHOATE.






	
int             es_support_push

	Setting this value to 0 means that

For client:


	we send a SETTINGS frame to indicate that we do not support server
push; and


	all incoming pushed streams get reset immediately.




(For maximum effect, set es_max_streams_in to 0.)

For server:


	lsquic_conn_push_stream() will return -1.









	
int             es_support_tcid0

	If set to true value, the server will not include connection ID in
outgoing packets if client’s CHLO specifies TCID=0.

For client, this means including TCID=0 into CHLO message.  Note that
in this case, the engine tracks connections by the
(source-addr, dest-addr) tuple, thereby making it necessary to create
a socket for each connection.

This option has no effect in Q046 and Q050, as the server never includes
CIDs in the short packets.

This setting is applicable to gQUIC only.

The default is LSQUIC_DF_SUPPORT_TCID0().






	
int             es_support_nstp

	Q037 and higher support “No STOP_WAITING frame” mode.  When set, the
client will send NSTP option in its Client Hello message and will not
sent STOP_WAITING frames, while ignoring incoming STOP_WAITING frames,
if any.  Note that if the version negotiation happens to downgrade the
client below Q037, this mode will not be used.

This option does not affect the server, as it must support NSTP mode
if it was specified by the client.


Defaults to LSQUIC_DF_SUPPORT_NSTP.









	
int             es_honor_prst

	If set to true value, the library will drop connections when it
receives corresponding Public Reset packet.  The default is to
ignore these packets.

The default is LSQUIC_DF_HONOR_PRST.






	
int             es_send_prst

	If set to true value, the library will send Public Reset packets
in response to incoming packets with unknown Connection IDs.

The default is LSQUIC_DF_SEND_PRST.






	
unsigned        es_progress_check

	A non-zero value enables internal checks that identify suspected
infinite loops in user on_read() and on_write() callbacks
and break them.  An infinite loop may occur if user code keeps
on performing the same operation without checking status, e.g.
reading from a closed stream etc.

The value of this parameter is as follows: should a callback return
this number of times in a row without making progress (that is,
reading, writing, or changing stream state), loop break will occur.

The defaut value is LSQUIC_DF_PROGRESS_CHECK.






	
int             es_rw_once

	A non-zero value make stream dispatch its read-write events once
per call.

When zero, read and write events are dispatched until the stream
is no longer readable or writeable, respectively, or until the
user signals unwillingness to read or write using
lsquic_stream_wantread() or lsquic_stream_wantwrite()
or shuts down the stream.

The default value is LSQUIC_DF_RW_ONCE.






	
unsigned        es_proc_time_thresh

	If set, this value specifies the number of microseconds that
lsquic_engine_process_conns() and
lsquic_engine_send_unsent_packets() are allowed to spend
before returning.

This is not an exact science and the connections must make
progress, so the deadline is checked after all connections get
a chance to tick (in the case of lsquic_engine_process_conns())()
and at least one batch of packets is sent out.

When processing function runs out of its time slice, immediate
calls to lsquic_engine_has_unsent_packets() return false.

The default value is LSQUIC_DF_PROC_TIME_THRESH().






	
int             es_pace_packets

	If set to true, packet pacing is implemented per connection.

The default value is LSQUIC_DF_PACE_PACKETS().






	
unsigned        es_clock_granularity

	Clock granularity information is used by the pacer.  The value
is in microseconds; default is LSQUIC_DF_CLOCK_GRANULARITY().






	
unsigned        es_init_max_data

	Initial max data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_DATA_CLIENT or
LSQUIC_DF_INIT_MAX_DATA_SERVER.

IETF QUIC only.






	
unsigned        es_init_max_stream_data_bidi_remote

	Initial max stream data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER.

IETF QUIC only.






	
unsigned        es_init_max_stream_data_bidi_local

	Initial max stream data.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER.

IETF QUIC only.






	
unsigned        es_init_max_stream_data_uni

	Initial max stream data for unidirectional streams initiated
by remote endpoint.

This is a transport parameter.

Depending on the engine mode, the default value is either
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER.

IETF QUIC only.






	
unsigned        es_init_max_streams_bidi

	Maximum initial number of bidirectional stream.

This is a transport parameter.

Default value is LSQUIC_DF_INIT_MAX_STREAMS_BIDI.

IETF QUIC only.






	
unsigned        es_init_max_streams_uni

	Maximum initial number of unidirectional stream.

This is a transport parameter.

Default value is LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT or
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER.

IETF QUIC only.






	
unsigned        es_idle_timeout

	Idle connection timeout.

This is a transport parameter.

(Note: es_idle_conn_to() is not reused because it is in microseconds,
which, I now realize, was not a good choice.  Since it will be
obsoleted some time after the switchover to IETF QUIC, we do not
have to keep on using strange units.)

Default value is LSQUIC_DF_IDLE_TIMEOUT.

Maximum value is 600 seconds.

IETF QUIC only.






	
unsigned        es_ping_period

	Ping period.  If set to non-zero value, the connection will generate and
send PING frames in the absence of other activity.

By default, the server does not send PINGs and the period is set to zero.
The client’s defaut value is LSQUIC_DF_PING_PERIOD.

IETF QUIC only.






	
unsigned        es_scid_len

	Source Connection ID length.  Valid values are 0 through 20, inclusive.

Default value is LSQUIC_DF_SCID_LEN.

IETF QUIC only.






	
unsigned        es_scid_iss_rate

	Source Connection ID issuance rate.  This field is measured in CIDs
per minute.  Using value 0 indicates that there is no rate limit for
CID issuance.

Default value is LSQUIC_DF_SCID_ISS_RATE.

IETF QUIC only.






	
unsigned        es_qpack_dec_max_size

	Maximum size of the QPACK dynamic table that the QPACK decoder will
use.

The default is LSQUIC_DF_QPACK_DEC_MAX_SIZE.

IETF QUIC only.






	
unsigned        es_qpack_dec_max_blocked

	Maximum number of blocked streams that the QPACK decoder is willing
to tolerate.

The default is LSQUIC_DF_QPACK_DEC_MAX_BLOCKED.

IETF QUIC only.






	
unsigned        es_qpack_enc_max_size

	Maximum size of the dynamic table that the encoder is willing to use.
The actual size of the dynamic table will not exceed the minimum of
this value and the value advertized by peer.

The default is LSQUIC_DF_QPACK_ENC_MAX_SIZE.

IETF QUIC only.






	
unsigned        es_qpack_enc_max_blocked

	Maximum number of blocked streams that the QPACK encoder is willing
to risk.  The actual number of blocked streams will not exceed the
minimum of this value and the value advertized by peer.

The default is LSQUIC_DF_QPACK_ENC_MAX_BLOCKED.

IETF QUIC only.






	
int             es_ecn

	Enable ECN support.

The default is LSQUIC_DF_ECN

IETF QUIC only.






	
int             es_allow_migration

	Allow peer to migrate connection.

The default is LSQUIC_DF_ALLOW_MIGRATION

IETF QUIC only.






	
unsigned        es_cc_algo

	Congestion control algorithm to use.


	0:  Use default (LSQUIC_DF_CC_ALGO)


	1:  Cubic


	2:  BBR




IETF QUIC only.






	
int             es_ql_bits

	Use QL loss bits.  Allowed values are:


	0:  Do not use loss bits


	1:  Allow loss bits


	2:  Allow and send loss bits




Default value is LSQUIC_DF_QL_BITS






	
int             es_spin

	Enable spin bit.  Allowed values are 0 and 1.

Default value is LSQUIC_DF_SPIN






	
int             es_delayed_acks

	Enable delayed ACKs extension.  Allowed values are 0 and 1.

Warning: this is an experimental feature.  Using it will most likely
lead to degraded performance.

Default value is LSQUIC_DF_DELAYED_ACKS






	
int             es_timestamps

	Enable timestamps extension.  Allowed values are 0 and 1.

Default value is @ref LSQUIC_DF_TIMESTAMPS






	
unsigned short  es_max_udp_payload_size_rx

	Maximum packet size we are willing to receive.  This is sent to
peer in transport parameters: the library does not enforce this
limit for incoming packets.

If set to zero, limit is not set.

Default value is LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX






	
unsigned        es_noprogress_timeout

	No progress timeout.

If connection does not make progress for this number of seconds, the
connection is dropped.  Here, progress is defined as user streams
being written to or read from.

If this value is zero, this timeout is disabled.

Default value is LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER in server
mode and LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT in client mode.






	
int             es_grease_quic_bit

	Enable the “QUIC bit grease” extension.  When set to a true value,
lsquic will grease the QUIC bit on the outgoing QUIC packets if
the peer sent the “grease_quic_bit” transport parameter.

Default value is LSQUIC_DF_GREASE_QUIC_BIT









To initialize the settings structure to library defaults, use the following
convenience function:


	
lsquic_engine_init_settings(struct lsquic_engine_settings *, unsigned flags)

	flags is a bitmask of LSENG_SERVER and LSENG_HTTP





After doing this, change just the settings you’d like.  To check whether
the values are correct, another convenience function is provided:


	
lsquic_engine_check_settings(const struct lsquic_engine_settings *, unsigned flags, char *err_buf, size_t err_buf_sz)

	Check settings for errors.  Return 0 if settings are OK, -1 otherwise.

If err_buf() and err_buf_sz() are set, an error string is written to the
buffers.





The following macros in lsquic.h specify default values:

Note that, despite our best efforts, documentation may accidentally get
out of date.  Please check your :file:`lsquic.h` for actual values.


	
LSQUIC_MIN_FCW

	Minimum flow control window is set to 16 KB for both client and server.
This means we can send up to this amount of data before handshake gets
completed.






	
LSQUIC_DF_VERSIONS

	By default, deprecated and experimental versions are not included.






	
LSQUIC_DF_CFCW_SERVER

	




	
LSQUIC_DF_CFCW_CLIENT

	




	
LSQUIC_DF_SFCW_SERVER

	




	
LSQUIC_DF_SFCW_CLIENT

	




	
LSQUIC_DF_MAX_STREAMS_IN

	




	
LSQUIC_DF_INIT_MAX_DATA_SERVER

	




	
LSQUIC_DF_INIT_MAX_DATA_CLIENT

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT

	




	
LSQUIC_DF_INIT_MAX_STREAMS_BIDI

	




	
LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT

	




	
LSQUIC_DF_INIT_MAX_STREAMS_UNI_SERVER

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT

	




	
LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER

	




	
LSQUIC_DF_IDLE_TIMEOUT

	Default idle connection timeout is 30 seconds.






	
LSQUIC_DF_PING_PERIOD

	Default ping period is 15 seconds.






	
LSQUIC_DF_HANDSHAKE_TO

	Default handshake timeout is 10,000,000 microseconds (10 seconds).






	
LSQUIC_DF_IDLE_CONN_TO

	Default idle connection timeout is 30,000,000 microseconds.






	
LSQUIC_DF_SILENT_CLOSE

	By default, connections are closed silenty when they time out (no
CONNECTION_CLOSE frame is sent).






	
LSQUIC_DF_MAX_HEADER_LIST_SIZE

	Default value of maximum header list size.  If set to non-zero value,
SETTINGS_MAX_HEADER_LIST_SIZE will be sent to peer after handshake is
completed (assuming the peer supports this setting frame type).






	
LSQUIC_DF_UA

	Default value of UAID (user-agent ID).






	
LSQUIC_DF_MAX_INCHOATE

	Default is 1,000,000.






	
LSQUIC_DF_SUPPORT_NSTP

	NSTP is not used by default.






	
LSQUIC_DF_SUPPORT_PUSH

	Push promises are supported by default.






	
LSQUIC_DF_SUPPORT_TCID0

	Support for TCID=0 is enabled by default.






	
LSQUIC_DF_HONOR_PRST

	By default, LSQUIC ignores Public Reset packets.






	
LSQUIC_DF_SEND_PRST

	By default, LSQUIC will not send Public Reset packets in response to
packets that specify unknown connections.






	
LSQUIC_DF_PROGRESS_CHECK

	By default, infinite loop checks are turned on.






	
LSQUIC_DF_RW_ONCE

	By default, read/write events are dispatched in a loop.






	
LSQUIC_DF_PROC_TIME_THRESH

	By default, the threshold is not enabled.






	
LSQUIC_DF_PACE_PACKETS

	By default, packets are paced






	
LSQUIC_DF_CLOCK_GRANULARITY

	Default clock granularity is 1000 microseconds.






	
LSQUIC_DF_SCID_LEN

	The default value is 8 for simplicity and speed.






	
LSQUIC_DF_SCID_ISS_RATE

	The default value is 60 CIDs per minute.






	
LSQUIC_DF_QPACK_DEC_MAX_BLOCKED

	Default value is 100.






	
LSQUIC_DF_QPACK_DEC_MAX_SIZE

	Default value is 4,096 bytes.






	
LSQUIC_DF_QPACK_ENC_MAX_BLOCKED

	Default value is 100.






	
LSQUIC_DF_QPACK_ENC_MAX_SIZE

	Default value is 4,096 bytes.






	
LSQUIC_DF_ECN

	ECN is disabled by default.






	
LSQUIC_DF_ALLOW_MIGRATION

	Allow migration by default.






	
LSQUIC_DF_QL_BITS

	Use QL loss bits by default.






	
LSQUIC_DF_SPIN

	Turn spin bit on by default.






	
LSQUIC_DF_CC_ALGO

	Use Cubic by default.






	
LSQUIC_DF_DELAYED_ACKS

	Delayed ACKs are off by default.






	
LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX

	By default, incoming packet size is not limited.






	
LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER

	By default, drop no-progress connections after 60 seconds on the server.






	
LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT

	By default, do not use no-progress timeout on the client.






	
LSQUIC_DF_GREASE_QUIC_BIT

	By default, greasing the QUIC bit is enabled (if peer sent
the “grease_quic_bit” transport parameter).








Receiving Packets

Incoming packets are supplied to the engine using lsquic_engine_packet_in().
It is up to the engine to decide what do to with the packet.  It can find an existing
connection and dispatch the packet there, create a new connection (in server mode), or
schedule a version negotiation or stateless reset packet.


	
int lsquic_engine_packet_in(lsquic_engine_t *engine, const unsigned char *data, size_t size, const struct sockaddr *local, const struct sockaddr *peer, void *peer_ctx, int ecn)

	Pass incoming packet to the QUIC engine.  This function can be called
more than once in a row.  After you add one or more packets, call
lsquic_engine_process_conns() to schedule outgoing packets, if any.


	Parameters

	
	engine – Engine instance.


	data – Pointer to UDP datagram payload.


	size – Size of UDP datagram.


	local – Local address.


	peer – Peer address.


	peer_ctx – Peer context.


	ecn – ECN marking associated with this UDP datagram.






	Returns

	
	0: Packet was processed by a real connection.


	1: Packet was handled successfully, but not by a connection.
This may happen with version negotiation and public reset
packets as well as some packets that may be ignored.


	-1: Some error occurred.  Possible reasons are invalid packet
size or failure to allocate memory.















	
int lsquic_engine_earliest_adv_tick(lsquic_engine_t *engine, int *diff)

	Returns true if there are connections to be processed, false otherwise.


	Parameters

	
	engine – Engine instance.


	diff – If the function returns a true value, the pointed to integer is set to the
difference between the earliest advisory tick time and now.
If the former is in the past, this difference is negative.






	Returns

	True if there are connections to be processed, false otherwise.












Sending Packets

User specifies a callback lsquic_packets_out_f in lsquic_engine_api
that the library uses to send packets.


	
struct lsquic_out_spec

	This structure describes an outgoing packet.


	
struct iovec          *iov

	A vector with payload.






	
size_t                 iovlen

	Vector length.






	
const struct sockaddr *local_sa

	Local address.






	
const struct sockaddr *dest_sa

	Destination address.






	
void                  *peer_ctx

	Peer context associated with the local address.






	
int                    ecn

	ECN: Valid values are 0 - 3. See RFC 3168 [https://tools.ietf.org/html/rfc3168.html].

ECN may be set by IETF QUIC connections if es_ecn is set.










	
typedef int (*lsquic_packets_out_f)(void *packets_out_ctx, const struct lsquic_out_spec  *out_spec, unsigned n_packets_out)

	Returns number of packets successfully sent out or -1 on error.  -1 should
only be returned if no packets were sent out.  If -1 is returned or if the
return value is smaller than n_packets_out, this indicates that sending
of packets is not possible.

If not all packets could be sent out, then:



	errno is examined.  If it is not EAGAIN or EWOULDBLOCK, the connection
whose packet caused the error is closed forthwith.


	No packets are attempted to be sent out until lsquic_engine_send_unsent_packets()
is called.












	
void lsquic_engine_process_conns(lsquic_engine_t *engine)

	Process tickable connections.  This function must be called often enough so
that packets and connections do not expire.  The preferred method of doing
so is by using lsquic_engine_earliest_adv_tick().






	
int lsquic_engine_has_unsent_packets(lsquic_engine_t *engine)

	Returns true if engine has some unsent packets.  This happens if
lsquic_engine_api.ea_packets_out could not send everything out
or if processing deadline was exceeded (see
lsquic_engine_settings.es_proc_time_thresh).






	
void lsquic_engine_send_unsent_packets(lsquic_engine_t *engine)

	Send out as many unsent packets as possibe: until we are out of unsent
packets or until ea_packets_out() fails.

If ea_packets_out() cannot send all packets, this function must be
called to signify that sending of packets is possible again.








Stream Callback Interface

The stream callback interface structure lists the callbacks used by
the engine to communicate with the user code:


	
struct lsquic_stream_if

	
	
lsquic_conn_ctx_t *(*on_new_conn)(void *stream_if_ctx, lsquic_conn_t *)

	Called when a new connection has been created.  In server mode,
this means that the handshake has been successful.  In client mode,
on the other hand, this callback is called as soon as connection
object is created inside the engine, but before the handshake is
done.

The return value is the connection context associated with this
connection.  Use lsquic_conn_get_ctx() to get back this
context.  It is OK for this function to return NULL.

This callback is mandatory.






	
void (*on_conn_closed)(lsquic_conn_t *)

	Connection is closed.

This callback is mandatory.






	
lsquic_stream_ctx_t * (*on_new_stream)(void *stream_if_ctx, lsquic_stream_t *)

	If you need to initiate a connection, call lsquic_conn_make_stream().
This will cause on_new_stream() callback to be called when appropriate
(this operation is delayed when maximum number of outgoing streams is
reached).

If connection is going away, this callback may be called with the
second parameter set to NULL.

The return value is the stream context associated with the stream.
A pointer to it is passed to on_read(), on_write(), and on_close()
callbacks.  It is OK for this function to return NULL.

This callback is mandatory.






	
void (*on_read)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	Stream is readable: either there are bytes to be read or an error
is ready to be collected.

This callback is mandatory.






	
void (*on_write)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	Stream is writeable.

This callback is mandatory.






	
void (*on_close)(lsquic_stream_t *s, lsquic_stream_ctx_t *h)

	After this callback returns, the stream is no longer accessible.  This is
a good time to clean up the stream context.

This callback is mandatory.






	
void (*on_hsk_done)(lsquic_conn_t *c, enum lsquic_hsk_status s)

	When handshake is completed, this callback is called.

This callback is optional.






	
void (*on_goaway_received)(lsquic_conn_t *)

	This is called when our side received GOAWAY frame.  After this,
new streams should not be created.

This callback is optional.






	
void (*on_new_token)(lsquic_conn_t *c, const unsigned char *token, size_t token_size)

	When client receives a token in NEW_TOKEN frame, this callback is called.

This callback is optional.






	
void (*on_sess_resume_info)(lsquic_conn_t *c, const unsigned char *, size_t)

	This callback lets client record information needed to
perform session resumption next time around.

This callback is optional.












Creating Connections

In server mode, the connections are created by the library based on incoming
packets.  After handshake is completed, the library calls lsquic_stream_if.on_new_conn
callback.

In client mode, a new connection is created by


	
lsquic_conn_t * lsquic_engine_connect(lsquic_engine_t *engine, enum lsquic_version version, const struct sockaddr *local_sa, const struct sockaddr *peer_sa, void *peer_ctx, lsquic_conn_ctx_t *conn_ctx, const char *sni, unsigned short max_udp_payload_size, const unsigned char *sess_resume, size_t sess_resume_len, const unsigned char *token, size_t token_sz)

	
	Parameters

	
	engine – Engine to use.


	version – To let the engine specify QUIC version, use N_LSQVER.  If session resumption
information is supplied, version is picked from there instead.


	local_sa – Local address.


	peer_sa – Address of the server.


	peer_ctx – Context associated with the peer.  This is what gets passed to TODO.


	conn_ctx – Connection context can be set early using this parameter.  Useful if
you need the connection context to be available in on_conn_new().
Note that that callback’s return value replaces the connection
context set here.


	sni – The SNI is required for Google QUIC connections; it is optional for
IETF QUIC and may be set to NULL.


	max_udp_payload_size – Maximum packet size.  If set to zero, it is inferred based on peer_sa()
and version().


	sess_resume – Pointer to previously saved session resumption data needed for
TLS resumption.  May be NULL.


	sess_resume_len – Size of session resumption data.


	token – Pointer to previously received token to include in the Initial
packet.  Tokens are used by IETF QUIC to pre-validate client
connections, potentially avoiding a retry.

See lsquic_stream_if.on_new_token callback.

May be NULL.




	token_sz – Size of data pointed to by token.















Closing Connections


	
void lsquic_conn_going_away(lsquic_conn_t *conn)

	Mark connection as going away: send GOAWAY frame and do not accept
any more incoming streams, nor generate streams of our own.

Only applicable to HTTP/3 and GQUIC connections.  Otherwise a no-op.






	
void lsquic_conn_close(lsquic_conn_t *conn)

	This closes the connection.  lsquic_stream_if.on_conn_closed
and lsquic_stream_if.on_close callbacks will be called.








Creating Streams

Similar to connections, streams are created by the library in server mode; they
correspond to requests.  In client mode, a new stream is created by


	
void lsquic_conn_make_stream(lsquic_conn_t *)

	Create a new request stream.  This causes on_new_stream() callback
to be called.  If creating more requests is not permitted at the moment
(due to number of concurrent streams limit), stream creation is registered
as “pending” and the stream is created later when number of streams dips
under the limit again.  Any number of pending streams can be created.
Use lsquic_conn_n_pending_streams() and
lsquic_conn_cancel_pending_streams() to manage pending streams.

If connection is going away, on_new_stream() is called with the
stream parameter set to NULL.








Stream Events

To register or unregister an interest in a read or write event, use the
following functions:


	
int lsquic_stream_wantread(lsquic_stream_t *stream, int want)

	
	Parameters

	
	stream – Stream to read from.


	want – Boolean value indicating whether the caller wants to read
from stream.






	Returns

	Previous value of want or -1 if the stream has already
been closed for reading.





A stream becomes readable if there is was an error: for example, the
peer may have reset the stream.  In this case, reading from the stream
will return an error.






	
int lsquic_stream_wantwrite(lsquic_stream_t *stream, int want)

	
	Parameters

	
	stream – Stream to write to.


	want – Boolean value indicating whether the caller wants to write
to stream.






	Returns

	Previous value of want or -1 if the stream has already
been closed for writing.












Reading From Streams


	
ssize_t lsquic_stream_read(lsquic_stream_t *stream, unsigned char *buf, size_t sz)

	
	Parameters

	
	stream – Stream to read from.


	buf – Buffer to copy data to.


	sz – Size of the buffer.






	Returns

	Number of bytes read, zero if EOS has been reached, or -1 on error.





Read up to sz bytes from stream into buffer buf.

-1 is returned on error, in which case errno is set:


	EBADF: The stream is closed.


	ECONNRESET: The stream has been reset.


	EWOULDBLOCK: There is no data to be read.









	
ssize_t lsquic_stream_readv(lsquic_stream_t *stream, const struct iovec *vec, int iovcnt)

	
	Parameters

	
	stream – Stream to read from.


	vec – Array of iovec structures.


	iovcnt – Number of elements in vec.






	Returns

	Number of bytes read, zero if EOS has been reached, or -1 on error.





Similar to lsquic_stream_read(), but reads data into a vector.






	
ssize_t lsquic_stream_readf(lsquic_stream_t *stream, size_t (*readf)(void *ctx, const unsigned char *buf, size_t len, int fin), void *ctx)

	
	Parameters

	
	stream – Stream to read from.


	readf – The callback takes four parameters:


	Pointer to user-supplied context;


	Pointer to the data;


	Data size (can be zero); and


	Indicator whether the FIN follows the data.




The callback returns number of bytes processed.  If this number is zero
or is smaller than len, reading from stream stops.




	ctx – Context pointer passed to readf.








This function allows user-supplied callback to read the stream contents.
It is meant to be used for zero-copy stream processing.

Return value and errors are same as in lsquic_stream_read().








Writing To Streams


	
ssize_t lsquic_stream_write(lsquic_stream_t *stream, const void *buf, size_t len)

	
	Parameters

	
	stream – Stream to write to.


	buf – Buffer to copy data from.


	len – Number of bytes to copy.






	Returns

	Number of bytes written – which may be smaller than len – or a negative
value when an error occurs.





Write len bytes to the stream.  Returns number of bytes written, which
may be smaller that len.

A negative return value indicates a serious error (the library is likely
to have aborted the connection because of it).






	
ssize_t lsquic_stream_writev(lsquic_stream_t *s, const struct iovec *vec, int count)

	Like lsquic_stream_write(), but read data from a vector.






	
struct lsquic_reader

	Used as argument to lsquic_stream_writef().


	
size_t (*lsqr_read)(void *lsqr_ctx, void *buf, size_t count)

	
	Parameters

	
	lsqr_ctx – Pointer to user-specified context.


	buf – Memory location to write to.


	count – Size of available memory pointed to by buf.






	Returns

	Number of bytes written.  This is not a ssize_t because
the read function is not supposed to return an error.  If an error
occurs in the read function (for example, when reading from a file
fails), it is supposed to deal with the error itself.










	
size_t (*lsqr_size)(void *lsqr_ctx)

	Return number of bytes remaining in the reader.






	
void    *lsqr_ctx

	Context pointer passed both to lsqr_read() and to lsqr_size().










	
ssize_t lsquic_stream_writef(lsquic_stream_t *stream, struct lsquic_reader *reader)

	
	Parameters

	
	stream – Stream to write to.


	reader – Reader to read from.






	Returns

	Number of bytes written or -1 on error.





Write to stream using lsquic_reader.  This is the most generic of
the write functions – lsquic_stream_write() and
lsquic_stream_writev() utilize the same mechanism.






	
int lsquic_stream_flush(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to flush.






	Returns

	0 on success and -1 on failure.





Flush any buffered data.  This triggers packetizing even a single byte
into a separate frame.  Flushing a closed stream is an error.








Closing Streams

Streams can be closed for reading, writing, or both.
on_close() callback is called at some point after a stream is closed
for both reading and writing,


	
int lsquic_stream_shutdown(lsquic_stream_t *stream, int how)

	
	Parameters

	
	stream – Stream to shut down.


	how – This parameter specifies what do to.  Allowed values are:


	0: Stop reading.


	1: Stop writing.


	2: Stop both reading and writing.











	Returns

	0 on success or -1 on failure.










	
int lsquic_stream_close(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to close.






	Returns

	0 on success or -1 on failure.












Sending HTTP Headers


	
struct lsxpack_header

	



This type is defined in _lsxpack_header.h_.  See that header file for
more information.



	
char             *buf

	the buffer for headers






	
uint32_t          name_hash

	hash value for name






	
uint32_t          nameval_hash

	hash value for name + value






	
lsxpack_strlen_t  name_offset

	the offset for name in the buffer






	
lsxpack_strlen_t  name_len

	the length of name






	
lsxpack_strlen_t  val_offset

	the offset for value in the buffer






	
lsxpack_strlen_t  val_len

	the length of value






	
uint16_t          chain_next_idx

	mainly for cookie value chain






	
uint8_t           hpack_index

	HPACK static table index






	
uint8_t           qpack_index

	QPACK static table index






	
uint8_t           app_index

	APP header index






	
enum lsxpack_flag flags:8

	combination of lsxpack_flag






	
uint8_t           indexed_type

	control to disable index or not






	
uint8_t           dec_overhead

	num of extra bytes written to decoded buffer









	
lsquic_http_headers_t

	
	
int   count

	Number of headers in headers.






	
struct lsxpack_header   *headers

	Pointer to an array of HTTP headers.





HTTP header list structure.  Contains a list of HTTP headers.






	
int lsquic_stream_send_headers(lsquic_stream_t *stream, const lsquic_http_headers_t *headers, int eos)

	
	Parameters

	
	stream – Stream to send headers on.


	headers – Headers to send.


	eos – Boolean value to indicate whether these headers constitute the whole
HTTP message.






	Returns

	0 on success or -1 on error.












Receiving HTTP Headers

If ea_hsi_if is not set in lsquic_engine_api, the library will translate
HPACK- and QPACK-encoded headers into HTTP/1.x-like headers and prepend them to the
stream.  To the stream-reading function, it will look as if a standard HTTP/1.x
message.

Alternatively, you can specify header-processing set of functions and manage header
fields yourself.  In that case, the header set must be “read” from the stream via
lsquic_stream_get_hset().


	
struct lsquic_hset_if

	
	
void * (*hsi_create_header_set)(void *hsi_ctx, lsquic_stream_t *stream, int is_push_promise)

	
	Parameters

	
	hsi_ctx – User context.  This is the pointer specifed in ea_hsi_ctx.


	stream – Stream with which the header set is associated.  May be set
to NULL in server mode.


	is_push_promise – Boolean value indicating whether this header set is
for a push promise.






	Returns

	Pointer to user-defined header set object.





Create a new header set.  This object is (and must be) fetched from a
stream by calling lsquic_stream_get_hset() before the stream can
be read.






	
struct lsxpack_header * (*hsi_prepare_decode)(void *hdr_set, struct lsxpack_header *hdr, size_t space)

	Return a header set prepared for decoding.  If hdr is NULL, this
means return a new structure with at least space bytes available
in the decoder buffer.  On success, a newly prepared header is
returned.

If hdr is not NULL, it means there was not enough decoder buffer
and it must be increased to at least space bytes.  buf, val_len,
and name_offset member of the hdr structure may change.  On
success, the return value is the same as hdr.

If NULL is returned, the space cannot be allocated.






	
int (*hsi_process_header)(void *hdr_set, struct lsxpack_header *hdr)

	Process new header.


	Parameters

	
	hdr_set – Header set to add the new header field to.  This is the object
returned by hsi_create_header_set().


	hdr – The header returned by @ref hsi_prepare_decode().






	Returns

	Return 0 on success, a positive value if a header error occured,
or a negative value on any other error.  A positive return value
will result in cancellation of associated stream. A negative return
value will result in connection being aborted.










	
void                (*hsi_discard_header_set)(void *hdr_set)

	
	Parameters

	
	hdr_set – Header set to discard.








Discard header set.  This is called for unclaimed header sets and
header sets that had an error.






	
enum lsquic_hsi_flag hsi_flags

	These flags specify properties of decoded headers passed to
hsi_process_header().  This is only applicable to QPACK headers;
HPACK library header properties are based on compilation, not
run-time, options.










	
void * lsquic_stream_get_hset(lsquic_stream_t *stream)

	
	Parameters

	
	stream – Stream to fetch header set from.






	Returns

	Header set associated with the stream.





Get header set associated with the stream.  The header set is created by
hsi_create_header_set() callback.  After this call, the ownership of
the header set is transferred to the caller.

This call must precede calls to lsquic_stream_read(),
lsquic_stream_readv(), and lsquic_stream_readf().

If the optional header set interface is not specified,
this function returns NULL.








Push Promises


	
int lsquic_conn_push_stream(lsquic_conn_t *conn, void *hdr_set, lsquic_stream_t *stream, const lsquic_http_headers_t *headers)

	
	Returns

	
	0: Stream pushed successfully.


	
	1: Stream push failed because it is disabled or because we hit

	stream limit or connection is going away.







	-1: Stream push failed because of an internal error.










A server may push a stream.  This call creates a new stream in reference
to stream stream.  It will behave as if the client made a request: it will
trigger on_new_stream() event and it can be used as a regular client-initiated stream.

hdr_set must be set.  It is passed as-is to lsquic_stream_get_hset().






	
int lsquic_conn_is_push_enabled(lsquic_conn_t *conn)

	
	Returns

	Boolean value indicating whether push promises are enabled.





Only makes sense in server mode: the client cannot push a stream and this
function always returns false in client mode.






	
int lsquic_stream_is_pushed(const lsquic_stream_t *stream)

	
	Returns

	Boolean value indicating whether this is a pushed stream.










	
int lsquic_stream_refuse_push(lsquic_stream_t *stream)

	Refuse pushed stream.  Call it from on_new_stream().  No need to
call lsquic_stream_close() after this.  on_close() will be called.






	
int lsquic_stream_push_info(const lsquic_stream_t *stream, lsquic_stream_id_t *ref_stream_id, void **hdr_set)

	Get information associated with pushed stream


	Parameters

	
	ref_stream_id – Stream ID in response to which push promise was sent.


	hdr_set – Header set. This object was passed to or generated by lsquic_conn_push_stream().






	Returns

	0 on success and -1 if this is not a pushed stream.












Stream Priorities


	
unsigned lsquic_stream_priority(const lsquic_stream_t *stream)

	Return current priority of the stream.






	
int lsquic_stream_set_priority(lsquic_stream_t *stream, unsigned priority)

	Set stream priority.  Valid priority values are 1 through 256, inclusive.
Lower value means higher priority.


	Returns

	0 on success of -1 on failure (this happens if priority value is invalid).












Miscellaneous Engine Functions


	
unsigned lsquic_engine_quic_versions(const lsquic_engine_t *engine)

	Return the list of QUIC versions (as bitmask) this engine instance supports.






	
unsigned lsquic_engine_count_attq(lsquic_engine_t *engine, int from_now)

	Return number of connections whose advisory tick time is before current
time plus from_now microseconds from now.  from_now can be negative.








Miscellaneous Connection Functions


	
enum lsquic_version lsquic_conn_quic_version(const lsquic_conn_t *conn)

	Get QUIC version used by the connection.

If version has not yet been negotiated (can happen in client mode), -1 is
returned.






	
const lsquic_cid_t * lsquic_conn_id(const lsquic_conn_t *conn)

	Get connection ID.






	
lsquic_engine_t * lsquic_conn_get_engine(lsquic_conn_t *conn)

	Get pointer to the engine.






	
int lsquic_conn_get_sockaddr(lsquic_conn_t *conn, const struct sockaddr **local, const struct sockaddr **peer)

	Get current (last used) addresses associated with the current path
used by the connection.






	
struct stack_st_X509 * lsquic_conn_get_server_cert_chain(lsquic_conn_t *conn)

	Get certificate chain returned by the server.  This can be used for
server certificate verification.

The caller releases the stack using sk_X509_free().






	
lsquic_conn_ctx_t * lsquic_conn_get_ctx(const lsquic_conn_t *conn)

	Get user-supplied context associated with the connection.






	
void lsquic_conn_set_ctx(lsquic_conn_t *conn, lsquic_conn_ctx_t *ctx)

	Set user-supplied context associated with the connection.






	
void * lsquic_conn_get_peer_ctx(lsquic_conn_t *conn, const struct sockaddr *local_sa)

	Get peer context associated with the connection and local address.






	
enum LSQUIC_CONN_STATUS lsquic_conn_status(lsquic_conn_t *conn, char *errbuf, size_t bufsz)

	Get connection status.








Miscellaneous Stream Functions


	
unsigned lsquic_conn_n_avail_streams(const lsquic_conn_t *conn)

	Return max allowed outbound streams less current outbound streams.






	
unsigned lsquic_conn_n_pending_streams(const lsquic_conn_t *conn)

	Return number of delayed streams currently pending.






	
unsigned lsquic_conn_cancel_pending_streams(lsquic_conn_t *, unsigned n)

	Cancel n pending streams.  Returns new number of pending streams.






	
lsquic_conn_t * lsquic_stream_conn(const lsquic_stream_t *stream)

	Get a pointer to the connection object.  Use it with connection functions.






	
int lsquic_stream_is_rejected(const lsquic_stream_t *stream)

	Returns true if this stream was rejected, false otherwise.  Use this as
an aid to distinguish between errors.








Other Functions


	
enum lsquic_version lsquic_str2ver(const char *str, size_t len)

	Translate string QUIC version to LSQUIC QUIC version representation.






	
enum lsquic_version lsquic_alpn2ver(const char *alpn, size_t len)

	Translate ALPN (e.g. “h3”, “h3-23”, “h3-Q046”) to LSQUIC enum.








Miscellaneous Types


	
struct lsquic_shared_hash_if

	The shared hash interface is used to share data between multiple LSQUIC instances.


	
int (*shi_insert)(void *shi_ctx, void *key, unsigned key_sz, void *data, unsigned data_sz, time_t expiry)

	
	Parameters

	
	shi_ctx – Shared memory context pointer


	key – Key data.


	key_sz – Key size.


	data – Pointer to the data to store.


	data_sz – Data size.


	expiry – When this item expires.  If you want your item to never expire, set this to zero.






	Returns

	0 on success, -1 on failure.





If inserted successfully, free() will be called on data and key
pointer when the element is deleted, whether due to expiration
or explicit deletion.






	
int (*shi_delete)(void *shi_ctx, const void *key, unsigned key_sz)

	Delete item from shared hash


	Returns

	0 on success, -1 on failure.










	
int (*shi_lookup)(void *shi_ctx, const void *key, unsigned key_sz, void **data, unsigned *data_sz)

	
	Parameters

	
	shi_ctx – Shared memory context pointer


	key – Key data.


	key_sz – Key size.


	data – Pointer to set to the result.


	data_sz – Pointer to the data size.






	Returns

	

	1: found.


	0: not found.


	-1:  error (perhaps not enough room in data if copy was attempted).







The implementation may choose to copy the object into buffer pointed
to by data, so you should have it ready.
















	
struct lsquic_packout_mem_if

	The packet out memory interface is used by LSQUIC to get buffers to
which outgoing packets will be written before they are passed to
lsquic_engine_api.ea_packets_out callback.

If not specified, malloc() and free() are used.


	
void *  (*pmi_allocate)(void *pmi_ctx, void *peer_ctx, unsigned short sz, char is_ipv6)

	Allocate buffer for sending.






	
void    (*pmi_release)(void *pmi_ctx, void *peer_ctx, void *buf, char is_ipv6)

	This function is used to release the allocated buffer after it is
sent via ea_packets_out().






	
void    (*pmi_return)(void *pmi_ctx, void *peer_ctx, void *buf, char is_ipv6)

	If allocated buffer is not going to be sent, return it to the
caller using this function.










	
typedef void (*lsquic_cids_update_f)(void *ctx, void **peer_ctx, const lsquic_cid_t *cids, unsigned n_cids)

	
	Parameters

	
	ctx – Context associated with the CID lifecycle callbacks (ea_cids_update_ctx).


	peer_ctx – Array of peer context pointers.


	cids – Array of connection IDs.


	n_cids – Number of elements in the peer context pointer and connection ID arrays.













	
struct lsquic_keylog_if

	SSL keylog interface.


	
void *    (*kli_open)(void *keylog_ctx, lsquic_conn_t *conn)

	Return keylog handle or NULL if no key logging is desired.






	
void      (*kli_log_line)(void *handle, const char *line)

	Log line.  The first argument is the pointer returned by kli_open().






	
void      (*kli_close)(void *handle)

	Close handle.










	
enum lsquic_logger_timestamp_style

	Enumerate timestamp styles supported by LSQUIC logger mechanism.


	
LLTS_NONE

	No timestamp is generated.






	
LLTS_HHMMSSMS

	The timestamp consists of 24 hours, minutes, seconds, and milliseconds.  Example: 13:43:46.671






	
LLTS_YYYYMMDD_HHMMSSMS

	Like above, plus date, e.g: 2017-03-21 13:43:46.671






	
LLTS_CHROMELIKE

	This is Chrome-like timestamp used by proto-quic.  The timestamp
includes month, date, hours, minutes, seconds, and microseconds.

Example: 1223/104613.946956 (instead of 12/23 10:46:13.946956).

This is to facilitate reading two logs side-by-side.






	
LLTS_HHMMSSUS

	The timestamp consists of 24 hours, minutes, seconds, and microseconds.  Example: 13:43:46.671123






	
LLTS_YYYYMMDD_HHMMSSUS

	Date and time using microsecond resolution, e.g: 2017-03-21 13:43:46.671123










	
enum LSQUIC_CONN_STATUS

	
	
LSCONN_ST_HSK_IN_PROGRESS

	




	
LSCONN_ST_CONNECTED

	




	
LSCONN_ST_HSK_FAILURE

	




	
LSCONN_ST_GOING_AWAY

	




	
LSCONN_ST_TIMED_OUT

	




	
LSCONN_ST_RESET

	If es_honor_prst is not set, the connection will never get public
reset packets and this flag will not be set.






	
LSCONN_ST_USER_ABORTED

	




	
LSCONN_ST_ERROR

	




	
LSCONN_ST_CLOSED

	




	
LSCONN_ST_PEER_GOING_AWAY

	








	
enum lsquic_hsi_flag

	These flags are ORed together to specify properties of
lsxpack_header passed to lsquic_hset_if.hsi_process_header.


	
LSQUIC_HSI_HTTP1X

	Turn HTTP/1.x mode on or off.  In this mode, decoded name and value
pair are separated by ": " and "\r\n" is appended to the end
of the string.  By default, this mode is off.






	
LSQUIC_HSI_HASH_NAME

	Include name hash into lsxpack_header.






	
LSQUIC_HSI_HASH_NAMEVAL

	Include nameval hash into lsxpack_header.












Global Variables


	
const char *const lsquic_ver2str[N_LSQVER]

	Convert LSQUIC version to human-readable string








List of Log Modules

The following log modules are defined:


	alarmset: Alarm processing.


	bbr: BBR congestion controller.


	bw-sampler: Bandwidth sampler (used by BBR).


	cfcw: Connection flow control window.


	conn: Connection.


	crypto: Low-level Google QUIC cryptography tracing.


	cubic: Cubic congestion controller.


	di: “Data In” handler (storing incoming data before it is read).


	eng-hist: Engine history.


	engine: Engine.


	event: Cross-module significant events.


	frame-reader: Reader of the HEADERS stream in Google QUIC.


	frame-writer: Writer of the HEADERS stream in Google QUIC.


	handshake: Handshake and packet encryption and decryption.


	hcsi-reader: Reader of the HTTP/3 control stream.


	hcso-writer: Writer of the HTTP/3 control stream.


	headers: HEADERS stream (Google QUIC).


	hsk-adapter:


	http1x: Header conversion to HTTP/1.x.


	logger: Logger.


	mini-conn: Mini connection.


	pacer: Pacer.


	parse: Parsing.


	prq: PRQ stands for Packet Request Queue.  This logs scheduling
and sending packets not associated with a connection: version
negotiation and stateless resets.


	purga: CID purgatory.


	qdec-hdl: QPACK decoder stream handler.


	qenc-hdl: QPACK encoder stream handler.


	qlog: QLOG output.  At the moment, it is out of date.


	qpack-dec: QPACK decoder.


	qpack-enc: QPACK encoder.


	rechist: Receive history.


	sendctl: Send controller.


	sfcw: Stream flow control window.


	spi: Stream priority iterator.


	stream: Stream operation.


	tokgen: Token generation and validation.


	trapa: Transport parameter processing.










          

      

      

    

  

    
      
          
            
  
Internals


Connection Management

References to connections can exist in six different places in an
engine.

[image: _images/lsquic-engine-conns.png]






          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | N
 | Q
 | R
 | V
 


A


  	
      	app_index (C member)


  





B


  	
      	buf (C member)


  





C


  	
      	chain_next_idx (C member)


  





D


  	
      	dec_overhead (C member)


  





F


  	
      	flags:8 (C member)


  





H


  	
      	hpack_index (C member)


  





I


  	
      	indexed_type (C member)


  





L


  	
      	LSENG_HTTP (C macro)


      	LSENG_SERVER (C macro)


      	lsquic_alpn2ver (C function)


      	lsquic_cids_update_f (C type)


      	lsquic_conn_cancel_pending_streams (C function)


      	lsquic_conn_close (C function)


      	lsquic_conn_ctx_t (C type)


      	lsquic_conn_get_ctx (C function)


      	lsquic_conn_get_engine (C function)


      	lsquic_conn_get_peer_ctx (C function)


      	lsquic_conn_get_server_cert_chain (C function)


      	lsquic_conn_get_sockaddr (C function)


      	lsquic_conn_going_away (C function)


      	lsquic_conn_id (C function)


      	lsquic_conn_is_push_enabled (C function)


      	lsquic_conn_make_stream (C function)


      	lsquic_conn_n_avail_streams (C function)


      	lsquic_conn_n_pending_streams (C function)


      	lsquic_conn_push_stream (C function)


      	lsquic_conn_quic_version (C function)


      	lsquic_conn_set_ctx (C function)


      	lsquic_conn_status (C function)


      	LSQUIC_CONN_STATUS (C type)


      	LSQUIC_CONN_STATUS.LSCONN_ST_CLOSED (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_CONNECTED (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_ERROR (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_GOING_AWAY (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_HSK_FAILURE (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_HSK_IN_PROGRESS (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_PEER_GOING_AWAY (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_RESET (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_TIMED_OUT (C member)


      	LSQUIC_CONN_STATUS.LSCONN_ST_USER_ABORTED (C member)


      	lsquic_conn_t (C type)


      	LSQUIC_DEPRECATED_VERSIONS (C macro)


      	LSQUIC_DF_ALLOW_MIGRATION (C macro)


      	LSQUIC_DF_CC_ALGO (C macro)


      	LSQUIC_DF_CFCW_CLIENT (C macro)


      	LSQUIC_DF_CFCW_SERVER (C macro)


      	LSQUIC_DF_CLOCK_GRANULARITY (C macro)


      	LSQUIC_DF_DELAYED_ACKS (C macro)


      	LSQUIC_DF_ECN (C macro)


      	LSQUIC_DF_GREASE_QUIC_BIT (C macro)


      	LSQUIC_DF_HANDSHAKE_TO (C macro)


      	LSQUIC_DF_HONOR_PRST (C macro)


      	LSQUIC_DF_IDLE_CONN_TO (C macro)


      	LSQUIC_DF_IDLE_TIMEOUT (C macro)


      	LSQUIC_DF_INIT_MAX_DATA_CLIENT (C macro)


      	LSQUIC_DF_INIT_MAX_DATA_SERVER (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_CLIENT (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_LOCAL_SERVER (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_CLIENT (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_BIDI_REMOTE_SERVER (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_CLIENT (C macro)


      	LSQUIC_DF_INIT_MAX_STREAM_DATA_UNI_SERVER (C macro)


      	LSQUIC_DF_INIT_MAX_STREAMS_BIDI (C macro)


      	LSQUIC_DF_INIT_MAX_STREAMS_UNI_CLIENT (C macro)


      	LSQUIC_DF_INIT_MAX_STREAMS_UNI_SERVER (C macro)


      	LSQUIC_DF_MAX_HEADER_LIST_SIZE (C macro)


      	LSQUIC_DF_MAX_INCHOATE (C macro)


      	LSQUIC_DF_MAX_STREAMS_IN (C macro)


      	LSQUIC_DF_MAX_UDP_PAYLOAD_SIZE_RX (C macro)


      	LSQUIC_DF_NOPROGRESS_TIMEOUT_CLIENT (C macro)


      	LSQUIC_DF_NOPROGRESS_TIMEOUT_SERVER (C macro)


      	LSQUIC_DF_PACE_PACKETS (C macro)


      	LSQUIC_DF_PING_PERIOD (C macro)


      	LSQUIC_DF_PROC_TIME_THRESH (C macro)


      	LSQUIC_DF_PROGRESS_CHECK (C macro)


      	LSQUIC_DF_QL_BITS (C macro)


      	LSQUIC_DF_QPACK_DEC_MAX_BLOCKED (C macro)


      	LSQUIC_DF_QPACK_DEC_MAX_SIZE (C macro)


      	LSQUIC_DF_QPACK_ENC_MAX_BLOCKED (C macro)


      	LSQUIC_DF_QPACK_ENC_MAX_SIZE (C macro)


      	LSQUIC_DF_RW_ONCE (C macro)


      	LSQUIC_DF_SCID_ISS_RATE (C macro)


      	LSQUIC_DF_SCID_LEN (C macro)


      	LSQUIC_DF_SEND_PRST (C macro)


      	LSQUIC_DF_SFCW_CLIENT (C macro)


      	LSQUIC_DF_SFCW_SERVER (C macro)


      	LSQUIC_DF_SILENT_CLOSE (C macro)


      	LSQUIC_DF_SPIN (C macro)


      	LSQUIC_DF_SUPPORT_NSTP (C macro)


      	LSQUIC_DF_SUPPORT_PUSH (C macro)


      	LSQUIC_DF_SUPPORT_TCID0 (C macro)


      	LSQUIC_DF_UA (C macro)


      	LSQUIC_DF_VERSIONS (C macro)


      	lsquic_engine_api (C type)


      	lsquic_engine_api.ea_alpn (C member)


      	lsquic_engine_api.ea_cert_lu_ctx (C member)


      	lsquic_engine_api.ea_cids_update_ctx (C member)


      	lsquic_engine_api.ea_get_ssl_ctx (C member)


      	lsquic_engine_api.ea_hsi_ctx (C member)


      	lsquic_engine_api.ea_hsi_if (C member)


      	lsquic_engine_api.ea_live_scids (C member)


      	lsquic_engine_api.ea_lookup_cert (C member)


      	lsquic_engine_api.ea_new_scids (C member)


      	lsquic_engine_api.ea_old_scids (C member)


      	lsquic_engine_api.ea_packets_out (C member)


      	lsquic_engine_api.ea_packets_out_ctx (C member)


      	lsquic_engine_api.ea_pmi (C member)


      	lsquic_engine_api.ea_pmi_ctx (C member)


      	lsquic_engine_api.ea_settings (C member)


      	lsquic_engine_api.ea_shi (C member)


      	lsquic_engine_api.ea_shi_ctx (C member)


      	lsquic_engine_api.ea_stream_if (C member)


      	lsquic_engine_api.ea_stream_if_ctx (C member)


      	lsquic_engine_check_settings (C function)


      	lsquic_engine_connect (C function)


      	lsquic_engine_cooldown (C function)


      	lsquic_engine_count_attq (C function)


      	lsquic_engine_destroy (C function)


      	lsquic_engine_earliest_adv_tick (C function)


      	lsquic_engine_has_unsent_packets (C function)


      	lsquic_engine_init_settings (C function)


      	lsquic_engine_new (C function)


      	lsquic_engine_packet_in (C function)


      	lsquic_engine_process_conns (C function)


      	lsquic_engine_quic_versions (C function)


      	lsquic_engine_send_unsent_packets (C function)


      	lsquic_engine_settings (C type)


      	lsquic_engine_settings.es_allow_migration (C member)


      	lsquic_engine_settings.es_cc_algo (C member)


      	lsquic_engine_settings.es_cfcw (C member)


      	lsquic_engine_settings.es_clock_granularity (C member)


      	lsquic_engine_settings.es_delayed_acks (C member)


      	lsquic_engine_settings.es_ecn (C member)


      	lsquic_engine_settings.es_grease_quic_bit (C member)


      	lsquic_engine_settings.es_handshake_to (C member)


      	lsquic_engine_settings.es_honor_prst (C member)


      	lsquic_engine_settings.es_idle_conn_to (C member)


      	lsquic_engine_settings.es_idle_timeout (C member)


      	lsquic_engine_settings.es_init_max_data (C member)


      	lsquic_engine_settings.es_init_max_stream_data_bidi_local (C member)


  

  	
      	lsquic_engine_settings.es_init_max_stream_data_bidi_remote (C member)


      	lsquic_engine_settings.es_init_max_stream_data_uni (C member)


      	lsquic_engine_settings.es_init_max_streams_bidi (C member)


      	lsquic_engine_settings.es_init_max_streams_uni (C member)


      	lsquic_engine_settings.es_max_cfcw (C member)


      	lsquic_engine_settings.es_max_header_list_size (C member)


      	lsquic_engine_settings.es_max_inchoate (C member)


      	lsquic_engine_settings.es_max_sfcw (C member)


      	lsquic_engine_settings.es_max_streams_in (C member)


      	lsquic_engine_settings.es_max_udp_payload_size_rx (C member)


      	lsquic_engine_settings.es_noprogress_timeout (C member)


      	lsquic_engine_settings.es_pace_packets (C member)


      	lsquic_engine_settings.es_ping_period (C member)


      	lsquic_engine_settings.es_proc_time_thresh (C member)


      	lsquic_engine_settings.es_progress_check (C member)


      	lsquic_engine_settings.es_ql_bits (C member)


      	lsquic_engine_settings.es_qpack_dec_max_blocked (C member)


      	lsquic_engine_settings.es_qpack_dec_max_size (C member)


      	lsquic_engine_settings.es_qpack_enc_max_blocked (C member)


      	lsquic_engine_settings.es_qpack_enc_max_size (C member)


      	lsquic_engine_settings.es_rw_once (C member)


      	lsquic_engine_settings.es_scid_iss_rate (C member)


      	lsquic_engine_settings.es_scid_len (C member)


      	lsquic_engine_settings.es_send_prst (C member)


      	lsquic_engine_settings.es_sfcw (C member)


      	lsquic_engine_settings.es_silent_close (C member)


      	lsquic_engine_settings.es_spin (C member)


      	lsquic_engine_settings.es_support_nstp (C member)


      	lsquic_engine_settings.es_support_push (C member)


      	lsquic_engine_settings.es_support_tcid0 (C member)


      	lsquic_engine_settings.es_timestamps (C member)


      	lsquic_engine_settings.es_ua (C member)


      	lsquic_engine_settings.es_versions (C member)


      	lsquic_engine_t (C type)


      	LSQUIC_EXPERIMENTAL_VERSIONS (C macro)


      	LSQUIC_FORCED_TCID0_VERSIONS (C macro)


      	LSQUIC_GQUIC_HEADER_VERSIONS (C macro)


      	lsquic_hset_if (C type)


      	lsquic_hset_if.hsi_create_header_set (C member)


      	lsquic_hset_if.hsi_discard_header_set (C member)


      	lsquic_hset_if.hsi_flags (C member)


      	lsquic_hset_if.hsi_prepare_decode (C member)


      	lsquic_hset_if.hsi_process_header (C member)


      	lsquic_hsi_flag (C type)


      	lsquic_hsi_flag.LSQUIC_HSI_HASH_NAME (C member)


      	lsquic_hsi_flag.LSQUIC_HSI_HASH_NAMEVAL (C member)


      	lsquic_hsi_flag.LSQUIC_HSI_HTTP1X (C member)


      	lsquic_http_headers_t (C type), [1]


      	lsquic_http_headers_t.count (C member)


      	lsquic_http_headers_t.headers (C member)


      	LSQUIC_IETF_DRAFT_VERSIONS (C macro)


      	LSQUIC_IETF_VERSIONS (C macro)


      	lsquic_keylog_if (C type)


      	lsquic_keylog_if.kli_close (C member)


      	lsquic_keylog_if.kli_log_line (C member)


      	lsquic_keylog_if.kli_open (C member)


      	lsquic_logger_if (C type)


      	lsquic_logger_if.log_buf (C member)


      	lsquic_logger_init (C function)


      	lsquic_logger_lopt (C function)


      	lsquic_logger_timestamp_style (C type)


      	lsquic_logger_timestamp_style.LLTS_CHROMELIKE (C member)


      	lsquic_logger_timestamp_style.LLTS_HHMMSSMS (C member)


      	lsquic_logger_timestamp_style.LLTS_HHMMSSUS (C member)


      	lsquic_logger_timestamp_style.LLTS_NONE (C member)


      	lsquic_logger_timestamp_style.LLTS_YYYYMMDD_HHMMSSMS (C member)


      	lsquic_logger_timestamp_style.LLTS_YYYYMMDD_HHMMSSUS (C member)


      	LSQUIC_MIN_FCW (C macro)


      	lsquic_out_spec (C type)


      	lsquic_out_spec.dest_sa (C member)


      	lsquic_out_spec.ecn (C member)


      	lsquic_out_spec.iov (C member)


      	lsquic_out_spec.iovlen (C member)


      	lsquic_out_spec.local_sa (C member)


      	lsquic_out_spec.peer_ctx (C member)


      	lsquic_packets_out_f (C type)


      	lsquic_packout_mem_if (C type)


      	lsquic_packout_mem_if.pmi_allocate (C member)


      	lsquic_packout_mem_if.pmi_release (C member)


      	lsquic_packout_mem_if.pmi_return (C member)


      	lsquic_reader (C type)


      	lsquic_reader.lsqr_ctx (C member)


      	lsquic_reader.lsqr_read (C member)


      	lsquic_reader.lsqr_size (C member)


      	lsquic_set_log_level (C function)


      	lsquic_shared_hash_if (C type)


      	lsquic_shared_hash_if.shi_delete (C member)


      	lsquic_shared_hash_if.shi_insert (C member)


      	lsquic_shared_hash_if.shi_lookup (C member)


      	lsquic_str2ver (C function)


      	lsquic_stream_close (C function)


      	lsquic_stream_conn (C function)


      	lsquic_stream_ctx_t (C type)


      	lsquic_stream_flush (C function)


      	lsquic_stream_get_hset (C function)


      	lsquic_stream_id_t (C type)


      	lsquic_stream_if (C type)


      	lsquic_stream_if.on_close (C member)


      	lsquic_stream_if.on_conn_closed (C member)


      	lsquic_stream_if.on_goaway_received (C member)


      	lsquic_stream_if.on_hsk_done (C member)


      	lsquic_stream_if.on_new_conn (C member)


      	lsquic_stream_if.on_new_stream (C member)


      	lsquic_stream_if.on_new_token (C member)


      	lsquic_stream_if.on_read (C member)


      	lsquic_stream_if.on_sess_resume_info (C member)


      	lsquic_stream_if.on_write (C member)


      	lsquic_stream_is_pushed (C function)


      	lsquic_stream_is_rejected (C function)


      	lsquic_stream_priority (C function)


      	lsquic_stream_push_info (C function)


      	lsquic_stream_read (C function)


      	lsquic_stream_readf (C function)


      	lsquic_stream_readv (C function)


      	lsquic_stream_refuse_push (C function)


      	lsquic_stream_send_headers (C function)


      	lsquic_stream_set_priority (C function)


      	lsquic_stream_shutdown (C function)


      	lsquic_stream_t (C type)


      	lsquic_stream_wantread (C function)


      	lsquic_stream_wantwrite (C function)


      	lsquic_stream_write (C function)


      	lsquic_stream_writef (C function)


      	lsquic_stream_writev (C function)


      	LSQUIC_SUPPORTED_VERSIONS (C macro)


      	lsquic_version (C type)


      	lsquic_version.LSQVER_043 (C member)


      	lsquic_version.LSQVER_046 (C member)


      	lsquic_version.LSQVER_050 (C member)


      	lsquic_version.LSQVER_ID27 (C member)


      	lsquic_version.LSQVER_ID28 (C member)


      	lsquic_version.LSQVER_ID29 (C member)


      	lsquic_version.N_LSQVER (C member)


      	lsxpack_header (C type)


  





N


  	
      	name_hash (C member)


      	name_len (C member)


  

  	
      	name_offset (C member)


      	nameval_hash (C member)


  





Q


  	
      	qpack_index (C member)


  





R


  	
      	
    RFC

      
        	RFC 3168


        	RFC 7540#section-6.5.2


      


  





V


  	
      	val_len (C member)


  

  	
      	val_offset (C member)


  







          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          LSQUIC Documentation
        


        		
          Getting Started
          
            		
              Supported Platforms
            


            		
              Dependencies
            


            		
              What’s in the box
            


            		
              Building
            


            		
              Demo Examples
            


            		
              Next steps
            


          


        


        		
          Tutorial
          
            		
              Introduction
              
                		
                  Include Files
                


              


            


            		
              Library Initialization
            


            		
              Engine Instantiation
              
                		
                  Engine Configuration
                


                		
                  Engine Settings
                


              


            


            		
              Sending Packets
            


            		
              Receiving Packets
            


            		
              Running Connections
            


            		
              Stream Reading and Writing
            


          


        


        		
          API Reference
          
            		
              Preliminaries
            


            		
              Library Version
            


            		
              QUIC Versions
            


            		
              LSQUIC Types
            


            		
              Library Initialization
            


            		
              Logging
            


            		
              Engine Instantiation and Destruction
            


            		
              Engine Callbacks
            


            		
              Engine Settings
            


            		
              Receiving Packets
            


            		
              Sending Packets
            


            		
              Stream Callback Interface
            


            		
              Creating Connections
            


            		
              Closing Connections
            


            		
              Creating Streams
            


            		
              Stream Events
            


            		
              Reading From Streams
            


            		
              Writing To Streams
            


            		
              Closing Streams
            


            		
              Sending HTTP Headers
            


            		
              Receiving HTTP Headers
            


            		
              Push Promises
            


            		
              Stream Priorities
            


            		
              Miscellaneous Engine Functions
            


            		
              Miscellaneous Connection Functions
            


            		
              Miscellaneous Stream Functions
            


            		
              Other Functions
            


            		
              Miscellaneous Types
            


            		
              Global Variables
            


            		
              List of Log Modules
            


          


        


        		
          Internals
          
            		
              Connection Management
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_images/lsquic-engine-conns.png
CiDiconnection
hash

Next Timeto Tick
Min-Heap.

Tickable Now
Queue

Has Outgoing
Packets Queue

Closing
Queve

Connection A

= cin1

Connection B

cin2

Connection C

cn3

cin4

cins

cine

cn7

This diagram shows how engine manages
connections. One can see that they can
be referenced from six different places.
When connection's reference count goes
to zero, it is destroyed.





_static/comment-bright.png





